Algebra lectures. Rimantas Grigutis
Lecture 1

Divisibility of integers. Greatest common divisor. Euklid’s algorithm.
Relativety prime numbers. Prime numbers. The fundamental theorem of arithmetic.

Divisisbility of integers.

The set { 1, 2, 3, ...} is called the set of natural numbers, and will be denoted
by N. The set {...,-3,-2,-1,0, 1, 2, 3, ... } is called the set of integers, and will
be denoted by Z.

Definition 1.1

An integer a is called a multiple of an integer b # 0, written a:b, if there exist
some integer ¢ that a =0b-c. In this case we also say that b is a divisor of a.

Corollary 1.2

If a,b,c € Z and a:c, bic then (a +b) :c.
If a,b,c € Z and a:c, then ab:c.

If a € Z,a # 0, then 0:a.

If a € Z, then a:1.

If a € Z,1:a, then a = +1.

If a:b, b:a, then a = +b.

If a:b,a # 0, then |a| > [b].
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Well-Ordering Principle 1.3
Let ng be any fized integer. Then any nonempty set of integers > ng has a
least element.

We will use this principle to prove one of the basic propertiess of integers - the
division property, which is well known from arithmetic.

Theorem 1.4 (Division property)
For any integers a and b, with b # 0, there exist unique integers q (the quo-
tient) and r (the remainder) such that a = bq + r, with 0 < r < |b|.

Proof. Consider the set of integers S = {a — k- bk € Z} :



..y a—2b,a—b,a,a+b,a+2b,....

Let S* be the subset of all non-negative integers of S, ST C S. The set ST is
non-empty, so by well-ordering principle has a least element » = a —qb > 0. Claim
that r < |b]. If not, then r — |b| > 0, and also

= 1b = (a—qb) = b =a—(q£ 1)b >0

(with the sign depending on the sign of b), contradiction.
To show uniqueness, suppose that both

a=bg+r, 0<r<|p
a=0bq +1, 0 <7 <o

and r > r’. Subtract to find
r—r'=(0-qb

Thus r — 7’ is a multiple of b. But since r — 1’ < |b| we have r = ' and then
q=4q.

Division algorithm

Given: a,be N
Received: 0<g=adivb,0<r=amodb:a=0bqg+r
1. Q:=0,R:=a
2. If R<b,thengq=Q,r=R
If R > b,then 3.
3. R:=R—-b,Q:=Q+1 and 2.

Greatest common divisor

Definition 1.5
If a and b are not both zero, then d > 0 is the greatest common divisor of a
and b, writen ged(a,b) or (a,b), if

1. a:d and bid.



2. Whenever aic and bic, then d:c.

Remark 1.6
For convenience we define (a,0) = |a| for any a, and ged(0.0) = 0.

The uniqueness of the greatest common divisor follows from property 2 and
the fact that it is positive ( see property 6 of Corollary 1.2).

The following special charakterization of the greatest common divisor of two
integers is fundamental.

Theorem 1.7
If a and bare integers, not both zero, then there exist integers zpy and 1o
such that ged (a,b) = axg + byg is least positive integer of the form ax + by with
x,y € Z.

Proof. Consider the set of integers M = {ax + by|z,y € Z}
Let M be the subset of all positive integers of M, M C M. The set M™ is
non-empty, so by well-ordering principle has a least element d = axg + byy > 0.

First we show that any divisor ¢ of a and b divides d. Let a:c and b:c. Then

d= a - To + b-yo
N~~~ S~~~
is a multiple of ¢ is a multiple of ¢
N TV

is a multiple of ¢

and d satisfies property 2 of Definition 1.5.
We will show that d also satisfies property 1. Let a = dg+r,0 < r < d. Then

0<r=a—dg=a— (axo+byo)qg=(1—z0q)a+ (—yoq)b e M

Since r < d and since d is the smallest positive integer so r = 0. Therefore a:d,

and similarly b:d.

Remark 1.8
The greatest common divisor (a,b) is expressible as ax + by, but integers x
and y are not unique. For instance,

5=(15,35) = 15- (—=2) + (35) - (1) = 15 (5) + (35) - (=2).



Euklid’s Algorithm.

The greatest common divisor of two numbers can be computed by using a
procedure known as the Euclidean algorithm.

The main observation for the Euklidean algorithm is that if a = bg 4 r, then
(a,b) = (b,r). Thus given integers a > b > 0, the Euklidean algorithm uses a
sequence of divisions as follows.

Let ag = a and a; = b, then

ag = a1q; + s 0<as<a;
a; = Qasqs + a3 0<ag <as

Op—2 = Gp_1Qn—1 1+ ap 0< ap < Qp-—1
Qp—1 = AnQn

Since a1 > as > az > --- > a,_1 > a, > 0, the remainders get smaller and
smaller, and after a finite number of steps the process stops. Thus gcd (a,b) =

(ag,a1) = (ar,az) = -+ = (a,,0) = ay,.

Euklid’s Algorithm

Given: a,be N.a>b

Received: d = ged(a, b)

1. A=a,B:=0

2. R := Amod B and 3.

3. If R=0,thend =B
If R # 0, then 4.

4. A:=B,B:= R and 2.

Extended Euklidean Algorithm

The greatest common divisor of two numbers a,b can be expressible in the
form ax + by, with x,y€ Z, by using the Extended Euclidean algorithm.

a=a-14+0b0-0
ap=a-0+b-1
ay =a-To+b-yo
as3 = a

3 +b-ys
ap =a-xp+ by
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a; = Qj—2 — Gj—1Gj—1 =
(a-zja+b-yja)—(a 2 1+b-yj1)g 1=
a(j-2 — qj-17j-1) + b (Yj—2 — ¢j-1Yj-1)
Tj=Tj—2 — j-1Tj-1
Yi =Yj—2 — qj-1Yj—1

Relativety prime numbers.

Definition 1.9
Two integers a and b are relatively prime if (a,b) = 1.

Theorem 1.10

Two integers a and b are relatively prime if and only if there exist integers x
and y such that 1 = ax + by, with some x,y € Z .

Proof. The first part follows using Theorem 1.7: if two integers a and b are
relatively prime , ged (a,b) = 1, then 1 = ax + by .
On the other side, if ax + by = 1 and ged(a, b) = d, then

1= a-x + b-
~~ Y
is a multiple of d

N

Y

is a multiple of d

Vv
is a multiple of ¢ d

Thus 1:d and d = 1.

Proposition 1.11( Property of relatively prime numbers)
Let ay,...,am and by, ..., b, be integers. If (a;,b;) =1 with 1 <i < m,1 <
j <mn,then (aj - ap,by---b,) =1.
Without proof.

Examples 1.12

1. Let § be any rational irreducible fraction §, so that (a,b) = 1. Then Z—: is
also an irreducible fraction with any n € N.

2. Let ¢ and n be positive integers. Then /c is either an integer or an irrational
number.



Theorem 1.13
If a is a multiple of relatively prime numbers b and c, then a is a multiple of

b-c.

Proof. If a s a multiple of b, then a = b-m, with some m € Z. Since integers
b and c are relatively prime implies bx + cy = 1. Then

mba + mc =m
nox Y )
is a multiple of ¢ is a multiple of ¢
A o

Vv

is a multiple of ¢

Thus m is a multiple of ¢, m = c-n,and a =n-m-c, i.e. a is a multiple of
b-c.
A

Prime numbers

Definition 1.14
An integer p > 1 is called a prime number if its only divisors are +1 and =£p.

Proposition 1.15
Every nonzero integer a # +1is a multiple of a prime number.
Without proof.

Theorem 1.16 ( Euklid)
There exist infinitely many prime numbers.

Proof. The proof is indirect. Suppose that there is a finite number of primes
D1, P2, -, Ps. Consider the number n = pypy---ps + 1, which will have a prime
factor p. If p were one of the primes p;, then

1= n_, — pip2-Ps
is a multiple of p; is a4 multiple of p;

~
is a multiple of p;



i.e. 1ip;, which is impossible because p; > 1.

Remark 1.17

1. Note that the first numbers in the form pips - - - ps+1 are prime: 2+1 = 3,2-3
+1=72-3-5+1=31,2-3-5-741=211,2-3-5-7-11+ 1 = 2311. However,
2-3-5-7-11-13+1 = 30031 = 59 - 509.

2. Let 7 (x) be the number of primes less than or equal to x. There is a proven,
that lim 2% =1 j.e. 7 (7) is asymptotic to .

T—00 Inx

Note, that if z > 3, then lﬁ—i <m(r) < 8% with A= %,B =2.

Inx?’

If ¥ > 17, then 7 (v) > =, and if x > 1, then 7 (2) < 1, 255506 .

3. The Mersenne numbers M, defined by M, = 2” — 1 are sometimes prime.
It is known, that if M, = 2P — 1 is prime, then p is prime. Note the fact that the
converse is false. For example, 2! — 1 = 23 - 89 is not prime even thout 11 is.
The largest known prime today is the 12978189 digit Mersenne prime 243112609 1

found in August 2008.

Proposition 1.18
(Property of prime numbers) An integer p > 1 is prime if and only if it

satisfies the following property: If ab:p for integers a and b, then either aip or

bp.
Without proof.

Proposition 1.19
If a is a multiple of prime numbers p, and ps, then a is a multiple of pips.
This is the conclution of the theorem 1.13.

Theorem 1.20 (Fundamental Theorem of Arithmetic)
Every integer n>1 can be written uniquely as a product of primes

_ .k ko k
n_pl .p2 ..... pSS’

with positive integer exponents and primes p; < ps < -+ < ps.
Without proof.

A

A



Algebra lectures. Rimantas Grigutis
Lecture 2
Congruences. Congruence classes. Z,,. Finite fields.
Congruences

Definition 2.1
Let m be a positive integer. Integers a anb b are said to be congruent modulo
m if m divides a — b, written a = b(modm) .

Examples 2.2
1. a = b(mod 1) for all integers a and b.
2. a = b(mod 2) if and only if integers a and b are both odd or even.

The next proposition presents basic properties of congruences.

Proposition 2.3

1. Reflexivity: a = a (modm) for all a € Z

2. Symmetry: if a =b(modm) then b =a(modm).

3. Transitivity: if a =b(modm) and b= c(modm) then a = c¢(modm)

4. If a=c(modm) and b= d(modm) then a £b=c+d(modm).

5. If a =c(modm) and b= d(modm) then a-b=c-d(modm).

6. Cancellation property: if ab = ac(modm), then b = ¢ (mod %), where
d = (a,m).

7. If ab = ac(modm) and (a,m) =1, then b = c(modm).

Remark 2.4
From 3 = 15 (mod 6) we obtain 1 # 5 (mod 6) because (3,6) # 1.

Proposition 2.5
Let a and m > 1 be integers. There exist an unique integer v € {0,1,... ,m —
1} such that a = r (modm).

Proof. Write an integer a as a = mq + r with 0 < r < m — 1. Then
a=r(modm).



Congruence classes

Definition 2.6

Let a and m be integers and m > 1. The congruence class of an integer a
modulo m, denoted ., KK, ( or a , with only implicit reference to m), is the set of
all integers equal to amodm :

mKa=A{b € Z|b = a(modm)}.
We say that Z,, is the set of all congruence classes.

Examples 2.7

1. m=2,a=0: Kog=0={be Z|b=0(mod2)} =2Z is the set of all even
integers.

2.m=2,a=1:K,=1={b€ Z|b=1(mod?2)} is the set of all odd integers.

3. m=2a=2:K,=2={beZ|b=2(mod2)} = 2Z is the set of all even
integers. The next proposition presents basic properties of congruence classes.

Proposition 2.8

1. Reflexivity:: if a € Z then a € ,,K,.

2. Symmetry: if a € Ky then b € ,,K,.

3. Transitivity: if a € Ky and b € ,,K. then a € ,,K..

Write an integer a as a = mq + r with 0 < r < m — 1. The Proposition 2.5 says
that the congruence class of an integer a, a, is precisely the set of integers with
the same remainder r, i.e. a = 7. For some K € Z,, a choise of ordinary integers
a so that a = K is a representative for the congruence class K. The remainders
0,1,...,m — 1 are representatives of the congruence classes: Z,, is simply the set
{0,1,...,m — 1} . Moreover, the set {0,1,...,m — 1} is a decomposition of the set
of all integers Z, i.e.

It is possible to do arithmetic with congruence classes. To add two congruence
classes modulo m, we just select any element a from the first class and any element
b from the second class, and then compute a + b as we would for normal integers.

9



The sum of the two congruence classes is then defined to be equal to the congruence
class containing the sum a + b.

Multiplication of congruence classes behaves in a similar manner: to multiply
two congruence classes, we select any elements a and b from each of the classes
and multiply them together. The product of the congruence classes is then defined
to be the congruence class containing the product a - b.

Definition 2.9 L
If K.\K"e Z, anda € K',be K" then K'+K"=a+band K'-K"=a-b

Remark 2.10

The Proposition 2.3 says that the sum and the product of two congruence
classes are independent of the representatives: if a,a’ € K’ and b,0' € K", i.e
a=da (modm) and b = (modm) thena+b=a+¥ anda-b=a-b.

Example 2.11
1. Arithmetic mod 3

+/0 1 2 |0 1 2
0 |0|1]2] 0[0]0]O
1 /1120 1/0[1]2
2 [2]0[1] 2[0]2]1
2. Multiplication mod 6
-0 1 2 3 45
0[{0[0|0]0]0O]O
1/0[1]2]3]4]5
210[2[4]0]2]4
3/0[3[(0[3]0]3
4042|042
5005141321

The set of congruence classes Z,, inherit many basic properties from ordinary
arithmetic.

Proposition 2.12

10



Fiz the modulus m. Let a,b,¢ € Z,,

1. Associativity of addition: (EL + 62 c=a+ (5 + c)
2. Commutativity of addition: a+b=0b+ a.

3. Property of 0: a+0 = a.

4. Additionative inverse: a+ (—a) = 0.

5. Distributivity: (_ S—bl_j)_ C)E ; Z l;j_% g

6. Associativity of multiplication : (& . B) c=a- (13 . E)
7. Commutativity of multiplication: a-b=10- a.

8

. Property of 1: a-1=a.

In this context, an additive inverse exist for any congruence class a € Z,,, but
a multiplicative inverse modulo m, defined as the solution to equation @ -7 = 1
in Z,, , or congruence equation ax = 1 (modm), does not always exist.

Theorem 2.13
A congruence class ,K, = a has a multiplikative inverse modulo m if and
only if (a,m) = 1.

Proof. If a multiplicative inverse mod m to a congruence class a is a congru-
ence class b then @-b = 1 in Z,, and ab = 1(modm), i.e. ab— 1 = mt and
ab+ m (—t) = 1with some integer ¢, witch implies that (a, m) = 1.

On the other side, if (a,m) = 1 then ab + mt = 1, with some b,¢t € Z. Thus
ab=1(modm) and @-b=1in Z,,.

Finite fields

Here we introduce some basic construction of an algebraic system.

A ring R is a set with two operations - addition and multiplication ( 4 and -)
with two special elements: 0 ( additive identity) and 1 ( multiplicative identity),
and with the properties:

1. Associativity of addition: (a +b)+c=a+ (b+c) for all a,b,c € R.

2. Commutativity of addition: a +b=0b+ a.

3. Property of 0: a+0=aforallaec R

4. Additionative inverse: if a € R then a has a additionative inverse b € R :
a+b=0.

5. Distributivity: aa _(:);)_ Cl _ Z . iiz 2 for all a,b,c € R.

11



6. Associativity of multiplication : (a-b)-c=a- (b-c) for all a,b,c € R.

Very often, a concrete ring has some additional properties:

7. Commutativity of multiplication: a-b=b-a for all a,b € R, then the ring
is called commutative ring.

8. Property of 1: a-1=a.for all @ € R,, then the ring is called a ring with
unit.

In a commutative ring R with unit, for a given a € R, if there is a™! € R so
that a-a=! = 1, then a~! is said to be multiplicative inverse, and a is to said to
have a multiplicative inverse.

9. A commutative ring in witch every nonzero element has multiplicative
inverse is a field.

Example 2.14

1. The integers Z with the usual addition and multplication is a commutative
ring with unit.

2. The set Z,, with addition and multiplcation modulo m is a commutaive
ring with unit.

3. The even integers 2Z with the usual addition and multplication is a com-
mutative ring without unit.

4. The rational numbers Q and the real numbers R with the usual addition
and multplication are all fields. This fields have an infinite number of elements.
However, there do exist fields with finite numbers of elements. We are able to show
that if an integer p is prime then the set of congruence classes Z,, is a field.

Theorem 2.15
Z,, is a finite field if and only if m is prime.

Proof. If m is a prime number p, then (1,m) = (2,m)=---=(m—1,m) =
1. Thus all the nonzero classes of Z,, have multiplicative inverses, and hence, Z,, is
a field. On the other hand, if m is not a prime, then m = a - b with 1 < a,b < m.
Thus (a,m) = a > 1 and the nonzero classses @ and b have not multiplicative
inverses and Z,, is not a field.

Example 2.16

1 .Consider p = 7. Then Z; is a field because all the nonzero elements
1,2,3,4,5,6 have inverses, witch are 1,4,5,2, 3, 6 respectively.

2. Consider p = 6. Then the nonzero elements 2, 3,4 has not inverses, because

2-3=3-4=0(mod6) and hence Zg is not a field.

12



Algebra lectures. Rimantas Grigutis
Lecture 3

Euler’s function. Euler’s theorem. Fermat’s little theorem. Wilson’s theorem.
Chinese remainder theorem

Euler’s function

Definition 3.1
We say that U, is the set of all congruence classes modulo m, witch have
multiplicative inverses:

Un={al(a,m)=1,0<a<m-—1}.

We say that the set U,, has ¢ (m) elements, where ¢ is the Euler function,
i.e. @ (m) is a cardinality of U,,.

Remark 3.2
For a positive integer m the Euler function ¢ (m) is the number of integers a
so that 0 <a <m —1 and (a,m) = 1.

The following property of the Euler function is fundamental.

Proposition 3 3 (multiplicative function)

If (m,n) =1, then ¢ (m-n) =@ (m)-p(n)( ¢(m) is a multiplicative func-
tion).

Without proof.

Example 3.4

1. If p is a prime number, then ¢ (p) = p— 1, because all numbers 1,2,...,p—1
are relatively prime with p.

2. Let a be an integer and p be a prime number . Then ¢ (p®) = p® —p*~ ! =

po‘(l—%),because if (a,p) = 1 and 0 < a < p* — 1 then a = t - p with
0<t<p*t—1

13



3. Let m is a product of primes m = p]fl . p’§2 ----- pks. Then using Propositiom

4 (120) = p(8-3-5) = ¢ (29) -9 (3) - (5) = (2 — 22) (3 — 1) (5— 1) = 32
P20 =120 (1~ ) (1) (125 “ 32

3.3wehavego(m):m<1—i>-.. _ L

Proposition 3.5

1.The set U, is closed under multiplication in this sence that a,b € U,, implies
ab € U,.

2. The set U,, is closed under inverses in this sence that a € U,, implies
a~tel,.

Proof is obvious.

Euler’s theorem. Fermat’s little theorem

Definition 3.6
Let m be a positive integer and s = p(m). A set of integers r1,79,...,75 18
called a prime residue system modulo m if U, = {71,T3,...,Ts}

Lemma 3.7

Let r1,79,...,75 be a prime residue system modulo m and an integer a is rel-
atwely prime with m. Then the system ary,arsy,...,ars 1S also a prime residue
system modulo m.

Proof. The integers 71,79, ...,7s and a are relatively prime with m. Then,
by Proposition 1.11, we have that for any ¢,1 < i < s, (ar;,m) = 1. Thus the
integers ary, ..., ary are relatively prime with m. Now if ar; = ar; (modm) then,
by cancellation property of Proposition 2.7 , r; = r; (modm) and the integers
ari,ars, ...,ar, is a prime residue system modulo m.

A

Corollary 3.8
Let ry,r9,...,75s be a prime residue system modulo m and an integer a 1is
relatively prime with m. Then

a’ry--rs =115 (modm) .
Proof. From Lemma 3.7 we have that

Up = {71, ....Ts} = {ar, ..., ars},

14



and hence

Theorem 3.9 (Euler)
If (a,m) =1, then a*™ =1 (modm).

Proof Let rq,rs,...,7s be a prime residue system modulo m . From Corollary
3.8 we have

a*ry-- rs =115 (modm)

and since the integers are relatively prime to m, we can apply cancellation
property of Proposition 2.7 to obtain

a® =1 (modm)
and

a?™ =1 (modm)

Corollary 3.10
If (a,m) =1, then a* = a®™~! (modm) .

Theorem 3.11(Fermat little theorem)
If p is a prime and a is an integer not divisible by p, then a?~! =1 (mod p)

Proof is obvious.

Corollary 3.12
If p is a prime and a is an integer not divisible by p, then a™! = aP~2 (mod p) .

The next theorem is a generalization of Fermat’s little theorem.

15



Defintion 3.13
A natural number is squarefree if it is the product of distinct primes.

Theorem 3.14
If a natural number m 1is squarefree, that is m =py----- pr for distinct primes

D1, ..o, Drs then for all integers a, a¥™*! = a (modm) .

pl----

Proof. We have that

p(m)=¢([pi---- pr)=E1—1) - (p—1).

Let a be an integer. For each prime p;, 1 < i < r, we have two cases.
First consider the case (a,p;) = 1.From Fermat Theorem we have.

and
a?™*1 = g (mod p;) .
Next,consider the case (a,p;) # 1. Then a is divisible by p; , i.e.
a = 0 (mod p;)
and
a?™+t =0 = q (mod p;) .

So we have that in both cases the integer a?"™*! — q is divisible by prime p,
1 <4 < r and from Proposition 1.19 we have that a?m+1 _ g is divisible by

Pr=m:

a?™*1 = g (mod m)
gem+1 — &

16



Wilson’s theorem

Theorem 3.15 (Wilson)

An integer m is prime if and only if (m — 1) = —1 (modm)

Proof. We have two cases. First consider the case where m is prime p.Thus
all the nonzero classes of Z, have multiplicative inverses:

_ — S T —
I =7,.., (p—1) =1ip1.

a®> = 1 (modp)
(a* — 1) = 0 (mod p)
(a—1)(a+1) =0 (modp).

Thus, (i — 1) (i + 1) is divisible by p This means that either i — 1 is divisible
bypandi—1=0,ie. ¢ =1,ori+1is divisible by pand i4+1 =p, ie. 1 =p—1.
Hence, we have

and
(p—1)!'=—-1(modp).

Next, consider the case where m is the product a-b ,1 < a,b < m. We have
three cases:

ILLIfl<a<b<m,then(m—-1)!=1---a---b---(m —1) is divisible by a - b
and (m —1)! =0 # —1 (modm) .

2.Ifm=aa=a*anda >2,m>4,then(m—1)!=1---(1-a)---(2-a) - (m—1)
is divisible by a? and (m — 1)! = 0 # —1 (modm) .

3.If m =4, then (4 — 1) =3!=6 =2 (mod4) # —1 (mod4).

A

Remark 3.16
Using Wilson’s theorem, we have
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- 0, with prime m
| #0, with composite m

7T~((m—1)!+1)>

m

s

However, to use f (m) as a primality test is not practical, because we have to
calculate a very large number (m — 1)! even for small m.

Chinese remainder theorem

Theorem 3.17 (Chinese remainder theorem).
Let my, ma, ...,my, be positive integers, with (m;,m;) = l,when i # j. Then
the system of congruences

x = a; (mod my)
T = ag (mod my)

x = ay (mod my,)

has a solution. Moreover, any two solutions are congruent modulo
m1-m2-.---mk.

Proof of theorem is based on the following Lemmas.

Lemma 3.18

Let my,ma,...,my be positive integers, with (m;,m;) = lwhen ¢ # j. If
a=b(modm;), 1 <1<k, then a =b(modmymsy---my).

Proof The proof uses induction. We consider the case when k& = 2 : we have
a = b(modm;) and a = b (modmsy), with (my, my) = 1. By Theorem 1.10 there
exist x and y such that m; +ymsy = 1. Multiplying through by (a — b), we obtain

(a —b)xmy + (a —b)yme =a — b
~——

mo mi
N > N
v Vv
L mima L mimse

Thus, we have that a — b is divisible by mm..

Lemma 3.19
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If a = b(modm) and m is divisible by d, then a = b (mod d).
Proof is is obvious ( I hope).

Now we can prove Chinese remainder theorem.
M
Proof of Theorem 3.17. Define M = mq -mo - --- - my, M; = — with
i=1,2,....,k. From (M;,m;) = 1 there exist N; such that l

M;N; =1 (modm;),i1=1,2,..., k.

N; is the multiplicative inverse of M; modulo m;.
Consider the number

¥ = M1N1a1 + -+ Mka(lk
Then we have
x* = MiNyay + - - - + My Nyay = M;N;a; = a; (mod m;) ,

hence x* is a solution of the system of congruences. Therefore, if x is a solution
of the system of congruences

x = aj (mod my)
T = ag (mod my)

xr = ay, (mod my,)

then

r = xo (modmy)
T = xo (mod my)

T = xo (mod my,)
and using Lemma 3.18 and Lemma 3.19 we have

x = z* (modmymg - - my) .

19



Example 3.20
Solve the system of congruences:

T = 2mod3
z =3modb .
r=2mod7

1. M=3-5-7=105
2. My =12 =35, My = 1 =21; My = 1P = 15.
3. Ny

7
=35 (mod3) =2; N, =217 (mod5) =1; N3 = 157! (mod 7) = 1.

4. 2*=35-2-2+421-1-3+15-1-2=233.
Finally, all solutions of the system of congruences is x = 233 + 105t,t € Z ,
ie x €105 K233.
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Algebra lectures. Rimantas Grigutis

Lecture 4

Determinants: definitions.

Determinants: definitions

The line [ in the xy-plane can be represented by an equation of the form
a1x + asy = b, where aq,as and b are real constants and a% + a% > 0, a; and ay
are not both zero. Consider the two lines {; and [, :

anT + ay = by (a%, + a2, > 0) 1)

an T + axpy = by (a3, + a3, > 0)

The solutions of the system of equations correspond to points of intersection

of Iy and l5. Add ags times the first equation to —a;» times the second and add
—asg1 times the first equation to a;; times the second to obtain

(allazz - 021a12) T = biagy — baaso
(a11a22 - a21a12> y = baajr — biag

There are three possibilities:

1) if aj1a99 — ag1a12 = 0 and byage — byajs = 0 then this system has infinitely
many solutions and the lines /; and [l overlap completely;

2) if ajjags — asia;z = 0 and byagy — baara # 0 then this system no solution
and the lines [; and [, are parallel and do not intersect;

3) if ajjasy — asiaiz # 0 then this system has exactly one solution

biage — baais

r =
a11G22 — A21G412
2011 — 01021

a11G22 — A21412

and the lines [; and [s intersect at one point.

Definition 4.1

1. The table ( le 212 > is called the coefficient matriz of the system (1) .
21 (22
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2. Let A = ZH 312 ) be a matriz. We define the determinant of A,
21 @22

denoted by det A, to be scalar

det A = det ( @ ) = 11022 — A21G12.

ag1 A22

The notation le 312 is also used for the determinat of A. The determi-
21 @23
nat’s formula is obtained by multiplying the entries on the rightwarf arrow and
y plying g

subtracting the product on the the leftward arrow:

a1 ai2 ai 12
positive product AN negative product /
a1 a22 az1 22

If det A # 0, where A is the coefficient matrix of the system (1), then the
system has a unique solution and this solution is

b1 a a;r by

by ag . as; by
r=+———1Iry=

@11 a2 a11 Qa2

Q21 A22 Q21 Q22

This formula is known as Cramer’s Rule.

The plane p in the zyz-space can be represented by an equation of the form
a1x + asy + azz = b, where aq, as, a3 and b are real constants and a% + a% + a% > 0,
a1, as and as are not both zero. Consider the three planes p;, ps and ps :

ane + apy + a3z = by (a2, + a2, + a25 > 0)
(91T + a0y + ag3z = by (a3, + a3y + a3 > 0) (2)
as1 T + asoy —+ a33z = b3 (agl + a§2 + (133 > 0)

The solutions of the system of equations correspond to points of intersection
of p1, p2 and ps.
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Add (aggass — aspass) times the first equation to (assais — ajpass) times the
second equation and then add the obtained sum to (ajsass — agaq3) times the
third equation

anT + apy + a3z =by |- ageass — azaao3
U1 T + Aol + 932 = by |- aspa13 — a12a33
as31® + asey + aszz = bg |- ajaass — G913

to obtain

(CL11CL22CL33 + G21G32013 + A31G12G23 — A11A32C23 — A21A12C33 — CL31CL22CL13) xr =
bla22a33 + b2a32a13 + b3a12a23 - bla32a23 - 526112@33 - b3a22a13-

Add (agzas; — assas) times the first equation to (assa;; — ajzas;) times the
second equation and then add the obtained sum to (ajzas; — agszaqr) times the
third equation

anx + aipy + a3z = by |- aszaz; — azzas
a1 + Aoy + aggz = be |- asza;; — aizaz;:
as1T + assy + aszzz = bs |- ajzas — aszan

to obtain

(011022033 + A21G320G13 + A31A12023 — A11A32C23 — (21012C33 — a3la22al3) Yy =
a11b2a33 + a2lb3a13 + CL3151G23 - a11b3a23 - a2lb1a33 - CL31b2@13~

Add (CL216L32 — a31a22) times the first equation to (CL31(I12 — CL116L32) times the
second equation and then add the obtained sum to (ajja90 — ag1ais) times the
third equation

ant + apy + a3z = by |- asazy — az1ag
anT + agy + azz = by |- azga12 — ajnazs
a3z + azy + a3z = bz |- ajjase — azan

to obtain

(al1azza33 + G21G32013 + A31A12023 — A11A32C23 — A21012C33 — 031022013) =
a11G22b3 + ag1asaby + asiainby — ajiasaby — ag1ai12bs — asiagb;.
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If (a1b203 -+ a21)361 —+ (Zgbng — a1b302 — a2b163 — CLngCl) 7é 0, then
d1b263 + dzbgCl + dgblcg - d1b302 - d2b163 — d3b201

xr =
11022033 + (21032013 + A31G12023 — A11G32C23 — A21012C33 — A31022013
a1d203 + GngCl + a3d102 — a1d302 — agdlcg — a3d201
y =
11022033 + (21032013 + A31G12023 — A11G32C23 — A21012C33 — 431022013
CL1b2d3 + azbgdl + a3b1d2 - a1b3d2 - agbldg — a3b2d1
Z =

11022033 + (21032013 + A31G12023 — A11G32C23 — A21412C33 — A31022013
and the planes py, po and p3 intersect at one point.
Definition 4.2

a11 Q12 Aaig
1. The table Qo1 Qoy Qo3 1s called the coefficient matrix of the system

(2).
apnl 12 Q13
2. Let A= | a9 ase ass | be a matriz. We define the determinant of A,

a31 dasz2 G33

a31 a3z Aas3
denoted by det A, to be scalar
11 Q12 Q13
detA:det 21 Q929 Q23 =

a31 aszz G33
(11022033 + A12023031 + 013021032 — G13022031 — G12021033 — A11023032.

ai; Qiz2 a3
The notation | as; a2 as3 | is also used for the determinat of A. The deter-
31 az2 0433
minat’s formula is obtained by recopying the first and second rows as shown in
(3). The determinant is computed by summning the products on the rightward
arrows and subtracting the products on the leftward arrows.

aq by c1 ap by C1
N\ /!
a2 by &) a2 by &)
positive N N negative 7 /
products 3 bs | products 3 b3 “3
N\ N / /!
ay b c1 ay by C1
N /!
ao b Co as by C2

24



(3)

If det A # 0, where A is the coefficient matrix of the system (1), then the
system has a unique solution and this solution is

by ai a13 air by 13 ai; a2 b

by ag @23 asz  bo @23 Az Gz bo

bs asy ass az; by ass as; asy bs
T = y Y = =

a1x Qa2 Q13 11 Qa2 Q13 aix Qi a3

Q21 Q22 Q23 Q21 Q22 Q23 a1 Q22 (23

a31 dazz G33 a31 dazz (33 ag1 asz ass

This formula is known as Cramer’s Rule.

Definition 4.3

A permutation of the set of integers {1,2,....,n} is an arrangement of the
numbers 1,2, ....n, denoted (iy,ia,...,1,). An inversion occurs in the permuta-
tion (i1,1s,...,1,) when i, > is but r < s. The total number of inversions in the
permutation(iy, is, ..., 1,) 18 denoted inv(iy, i, ...,1,) A permutaion is called even
if inv(iy, g, ..., 1,) 18 an even integer and is called odd if inv(iq, s, ...,1,) is an odd
nleger.

The set {1,2,...,n} have n! different permutations.

Example 4.4
The table of the permutations of {1, 2} :

even permutation

odd permutation

(1,2)

(2,1)

The table of the permutations of {1,2

, 3}

even permutations | odd permutations
(1,2,3) (3,2,1)
(2,3,1) (2,1,3)
(3,1,2) (1,3,2)
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Definiton 4.5

ai;p -0 Qi
The determinat of an nxn matriz is the sum of n! signed
Ap1 -+ Qnp
inv(i1,i2,...,in) .. . . .
products (—1) A1, A4y * * * Qpg, , Where (i1,19,...,1,) 18 a permutation of
{1,2,....,n}:
a1 - Qin
. . . inv(i1,i2 ...,in)
det | : . 1 |= > (-1 " iy G2y A,
App " A, (ih...,’in)

where E is the sum over all permutations (iy, iz, ..., 1y,) .
(ilvn'ain)

26



Algebra lectures. Rimantas Grigutis
Lecture 5

Determinants: properties.

Determinants: properties

Definition 5.1

Supose that A is an n x n matriz. The (i,])- minor of A is defined to be the
determinant of the (n — 1) x (n — 1) matriz obtained from A by deleting the i
row and the j™ column. We will denote this by M;; (A) = M;;.

Proposition 5.2
a1 daiz2 A3

Let A be a 3 X3 matriz, A= | as1 as a3 |. Then
a31 dasz2 G33

det A = a;n M1 — a1aMio + a3 M.

Proof.

Q22 A23 Q21 Q23 Q21 A22
a1 My —a1oMis+a13Mis = an
a3z 33 a31 a33 az1 asz
ai (@22a33 - a23a32) — Q12 (421@33 - a23a31) + aq3 (a21a32 - Cl226l31) = (11022033 +
(12023031 + G13021032 — (13022031 — Q12021033 — (11023032 = det A.

—Q12 +a13 =

A

This proposition is a special case of the folowing theorem, which we state with-
out proof.

Theorem 5.3
aip -+ Qin
Let A = oo . Then we can expand the determinant of A by

Qp1  **+  Qnp
along any row or column:

det A =(—1)"" ag My + (1) aigMig+ - - -+ (= 1) @ M,
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for each 1 < i <mn, the i-th row expansion, and
det A = (—1)1+j ale1j+ (—1)2+j (ngng—{— cee (_1>n+j aannj

for each 1 < i < mn, the j-th column expansion.
Without proof.

We shall present now some of the fundamental properties of the determinant.

Property D1

aixr - Qin
If the matriz A = oo, has zero row, i.e. a;; = Gy = -+ =
Api "+ Gy
ain = 0 for somel < i <n , then det A = 0. If the matrix A has zero column, i.e.
a1; = Qgj = -+ = Qp; = 0 for somel < j <n , then det A = 0.

Property D2
The determinant of a upper triangular matriz is the product of the entries on
aip -+ Qin
the diagonal: if A = oo and a;; =0, with 1 <1i < j < n, then

Qp1 - Qnn

det A = a11a92 * * * App, -

Property D3
The determinant of a lower triangular matrix is the product of the entries on
aip -+ Qin
the diagonal: if A = oo and a;; =0, with n > 11> j > 1, then

Qp1 **  Qpp

det A = a11a92 * * * App -

Property D4
aix -0 Qi a1 - Apl
If A= Lo and AT = oo, , the transpose of

An1  *+* Qpp Aip  * Qpp
the matriz A , then
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det A = det A”.

Property D5
If two rows of the matix A are equal, then det A = 0.

Property D6
If two columns of the matiz A are equal, then det A = 0.

Property D7
If two rows or two columns of a matrix are interchanged, then the determinant

changes sign.

Property D8.
The determinant has a linearity of each row and column:

a11+a/11 a1n+a/1n air - Qip a’/ll alln
: = | :
n1 QAnn Ap1 "+ Apn ap1 - Gpp
ap+ay o Qi aip o Qi ay e Qg
: = A :
Qn1 + a;ﬂ cr Gpp an1 -+ Qpp a;ﬂ T Gpp
tay; -+ tai, ai o Qip
=1
ap1 - Ann Ap1 -+ Gpp
tayy -+ Qi aip - Qg
=1
tanl T App Ap1 -+ App

Property D9
If a multiple of one row is added to another row, the determinant of the new

matrix is the same as the old one.

Example 5.4

1 3 2
Evaluate the determinant | 4 2 10
8 19 6

Keep the first row, multiply the first row with (—4) and add to the second
row, then multiply the first row with (—8) and add to the third row
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4 2 10 ! |
8 19 6 !
We get
1 3 2 1 2 3
4 2 10|{=|0 —-10 2
8 19 6 0 -5 -—-10

Expand along the first column, gives

12 3
~10 2 2 3 2 3
o -0 2 || 7Y Sil-of 2 S ro] 55
0 5 10 5 10 5 —10 10 2
~10 2
~5 —10 |

Keep the first row, multiply the first row with (—3) and add to the second row

-10 2 | (-3)

-5 -10 l
We get
L3 2 1 2 3 —10 2 —10 2 property D2
4210:0—102—_5_10:0_11 =
8 19 6 0 -5 -10

(—=10)(—11) = 110.
Example 5.5

1 311

. 2 1 7 2

Evaluate the determinant 381 92| —15.

1 4 31
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Algebra lectures. .Rimantas Grigutis
Lecture 6
Permutations: Definitions. Cycles. Transpositions. Sign of the permutations
Definitions. Cycles

Definition 6.1

Let 3, = {1,2,....,n} be the set of integers from 1 to n. A function m : 3,
— X, is called a permutation of X, if m is bijection on X,. The set of all
permutations of X, will be denoted by S,,.

We can describe a permutation 7 by listing the integers ¢ € ¥,, and the corre-
sponding values 7 (7) :

The identity permutation, denoted ¢, is the permutation which represents ¢ to

_ 1 2 ... n
*=\1 2 .. »n
Definition 6.2

A permutation o € S, is a k-cycle if there exist k distinct integers iy, 1, ..., g
from %, such that o (iy) = 19,0 (ia) = i3,...,0 (i) = i1 and o (i) = i for all
i ¢ {i1, 19, ...,11} . We will write (i1, 1, ..., 1) to denote the cycle o.

Let o = (i1, 12, ..., 1) be the k-cycle . The notation for o we can also write in
k different ways:

o = ('ig,ig, ...,ik,il)
g = (ig, ...,ik,il,ig)

g = (Zk, il, ig..., ik—l) .
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Definition 6.3
Two cycles o1 = (i1,142,...,0x) and oo = (j1,j2- ..., J1) are disjoint if i, # is
for all r and s.

Theorem 6.4
Any permutation in S, can be expressed as a product of disjoint cycles.

Proof. Let m € S,, , i1 € ¥,, and define the finite set

Cy = {iy,m(iy) , 72 (ir), ...},

where 7 (i) = 7 (7t (7)) for all positive integers ¢ .
Now let iy be the integer in ¥, that is not in C; and define the finite set

Cg = {ig,ﬂ'(ig) ,7T2 (ZQ) y } .

Now let 73 be the integer in ¥, that is not in C; U Cy and define the finite set

03 = {ig,ﬂ' (23) ,7T2 (13) s } .

We continue in this way to define finite disjoint sets Cly,.... Since ¥, is a
finite set, this process will end and there will be a finite number of these sets:
C1,Cs. ..., C,,. Define the disjoint cycles

o1 = (iy, 7 (i), 7% (i1),...) , 0 i, T (i) , T2 (1) 5 o) s o s O =

e G o ) .

Then © = 0105 - - - 0,,. This expression is called the disjoint cycle decomposi-
tion of 7.

Example 6.5
123 45 6 78
41 3 2 7 8 6 5
We start a cycle with 1, since 7 (1) = 4, 7(4) = 2,7 (2) = 1 we obtain the cycle
(1,4,2) . Because the integer 3 not used so far, we obtain the cycle (3) because
7 (3) = 3. The integer 5 not used so far, therefore we obtain the cycle (5,7,6,8),
since 7(5) = 7,7 (7) = 6,7 (6) = 8,7 (8) = 5.
The disjoint cycle decomposition of 7 is 7 = (1,4, 2) (3) (5,7,6,8).

Let m =
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Definition 6.6
Let m and p be permutations in S,. A composition of the functions © and p

is called the product of m and p, written wp. That is wp (i) = 7w (p(i)) , for all
1€ 2.

Remark 6.7
If 7 and p are disjoint cycles, then mp = pr.

The next example shows that the multiplication on .S, is not commutative.

Example 6.8

1 2 3 1 2 3
Ifﬂ':(3 9 1>andp:<3 1 2),them

(123 (123
PT=\92 1 3 13 2)°7

We summarize some properties of permutations which hold under multiplica-
tion.

Proposition 6.8
Let w,p and T be permutations in S,,.
S1 Associativity of multiplication : T (pr) = (7p) 7 :

(7 (pm)) (1) = 7 ((pm) () = 7 (p (7 (1)) = (7p) (7 (1)) = ((7p) 7) (1)

S2 Property of identity : em = e =7
S8 Multiplicative inverse : if

(1 2 .. n)
m = . . .
1 12 ... 1p
IR A TR PR
g _(1 2 .. n)

then



and

Transpositions. Sign of the permutations

Definition 6.9
A 2-cycle (i1,19) is called a transposition.

Theorem 6.10
If n > 2, then any permutation in S, can be written as a product of transpo-
sitions.

Proof. Any cycle can be written as a product of transpositions as follows:
(91,72, 13, -y Ik, k) = (i1, 92) (i2,93) <~ (ik—1, k) -

Since each permutaton is a product of cycles, we can obtain each permutation
as a product of transpositions.
A
As we can see, there is no unique way to represent permutation as the product
of transpositions. For instance, (1,2) = (1,2)(1,2)(1,2).

Proposition 6.11

If m €S, can be written as a product of r transpositions and if the same w
can be written as a product of s transpositions, then r and s is either both even or
both odd. A permutation 7 is called even if w is a product of an even number of
transpositions and odd if it is a product of an odd number of transpositions.

The proposition is more difficult to prove and we omit the proof.

Definition 6.12
If the permutatzon m € S, can be written as a product of transpositions as
follow m = 1179+ Tk, then the sign of the permutation w, written sgn (w), is

defined by sgn (7) = (—1)" .
The sgn function satisfies the following properties.

Corollary 6.13
1. sgn (¢) = 1 and every transposition (i1, 5) has sign —1, sgn (i1, i) = —1.
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2. If a permutation 7 is even, then sgn (7) = 1, and if a permutation 7 is odd,
then sgn (r) = —1.

3. For m and p € S, sgn (wp) = sgn (7) sgn (p) .

4. For all m € S, sgn (1) = sgn (77 1).

5. The sign of the k-cycle o is sgn (o) = (=1)F.

Without proof.

Definition 6.14
Let A, denote the set of all even permutation. The set A, is called the alter-
nating set on X,.

Proposition 6.15
For n > 2, the number of even permutations in S, is equal to the number of

odd permutations. So that the number of even permutations is % ( the alternating
n!

set A, has 5 elements).

Proof. Let B, be the set odd permutations in S,. Fix a transposition 7 in
S,,.Denote the set

U-={me Sym=pr,pe A,}.

The set U, is the subset of B, and let m; = p;7 and m = p,7 be two

permutations of U.. Suppose that m; = 3. Then p;7 = p,7 and so
P1 = P1TT = PoTT = Pa-

Therefore, the number of even permutations in S5,,, denote m, is not more than
the number of all odd permutations in S,, : m <n —m and 2m < n.
Conversely denote the set

V. ={m € S,|m=pr,p € B,}.

The set V, is the subset of A, and let my = p;7 and 72 = p,7 be two
permutations of V.. Suppose that m; = mo. Then p;7 = p,7 and so

P1 = P1TT = PoTT = Pa-

Therefore, the number of odd permutations in S, is not more than the number

of all even permutations in S, : n —m < m and n < 2m.
|

n!
Summarizing, we have n = 2m. So that m = 5
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Algebra lectures. Rimantas Grigutis
Lecture 7
Systems of linear equations. Gaussian elimination. Solving linear equations
Systems of linear equations
We begin with a definition.

Definition 7.1
A linear equation in n unknowns xi,xs,...,x, is an equation of the form

T +asT+ -+ a2, = b,
where aq, s, ..., a, and b are real constants.

A system of m linear equations in in n unknowns x1, xs, . .., x, is a set of linear
equations

1171 + Q12T + - + ATy = bl
a921 + 9299 + -+ aonLy — b2

(1)

Am1T1 + Q2T + -+ + ATy = bm

If all the b; = 0 then the system (1) is called homogeneous.
We say that a system (1) has a solution if there exist a sequence of numbers
a1, Qo, ..., a, which satisfy each of the equations:

a11001 + A12Q9 + -+ A1n0y — bl
A21001 + A22Qg + * + + + AopnQly = b2

Am10 + Ayl + + - + Ay = bm

A system of equations is called consistent if it has a solution. Otherwise the
system is called inconsistent.
The matrix

aiz - Qi
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is called the coefficient matrix of the system. The matrix

@11 - Qip | by
(2)

Am1 *° Qmnp | bm
is called the augmented matrix of the system.

Definition 7.2 (Elementary row operations)

There are three types of elementary row operations of an augmented matrix
(2) corresponding to the equations in the associated system (1):

1. Interchanging two rows of (2) corresponds to interchanging two equations
in (1).

2. Multiplying the row by a nonzero constant correspomds to multiplying the
equation in (1) by the same nonzero constant.

3. Adding a multiple of one row to another row in (2) corresponds to adding
the same multiple of the respective equation to another respective equation.

Matriz A is row equivalent to matriz B if B is obtained from A by a sequence
of elementary row operations.

Proposition 7.3

Elementary row operations do not change the set of solutions of the system: if
A and B are row equivalented matrices of two system of linear equations, then the
two systems have the same set of solutions.

Without proof.

Definition 7.4 (Row-echelon form)
1. The zero matrix of any size is in row-echelon form
2. A nonzero matrix

1 . o e r
0 e 1 e a1j2 ‘e aljr A1p

o --- 0 --- 0 1 --- o,

0 0 1 G (3)
0 0 0 0

0 0 0 0
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where

1)1<ji<jo<..<jr<m

2) avjy =, ag, =+ = arj, =1
3) a5, =0, with s; < j; , 1 <i<r;
4) ay; =0, with t >r, 1 <i<mn,

is in row-echelon form.

3. Let a matriz A be row equivalent to the matriz in row-echelon form (3).
Then rankA = r.

Example 7.5

The follwing matrices are in row-echelon form:

01 30 -1
01 2 3 4 0011 4
00015 and | 0 0 0 1 2
0 00 01 00 0O0 O
00 0O0 O
012 3 4
) 0015 — . )
The matrix 0016 4 is not in row-echelon form.
0 00O0 O

Proposition 7.6
If a matriz A is in row echelon form, then

(0...0 | A)

and

o
N
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are in row-echelon form.
Without proof.

Gaussian elimination

Theorem 7.7 (Gaussian elimination)
Let A be a given matriz . Then A is row equivalent to matriz B which is in
row-echelon form.

Proff. Let A is a matrix that has n columns. We will use induction by n.
For n = 1 the matrix A is

(m1

Consider two cases.

(1) If a3 = ag1 = - -+ = a1 = 0 then the matrix A is in row echelon form.

(2) If a;; # 0 for some i,1 < ¢ < m, then we use the following steps:

() interchange the top row with i-th row.

(74) multiply the first row of the preceding matrix by %

(247) for all j,2 < j < m, add (—a;;) times the first row of the preceding matrix
to the j-th row.

After these steps we have the following matrix B in row-echelon form:

Asume now that the theorem is true for n — 1. We will show that it is true for
the matrix A with n rows:



Consider two cases.
(1) Ifau = a1 = = Q1 = 0 then

0 | aiz -+ am

where A’ is the matrix with n—1 rows and by induction there exist such matrix
B’ in row-echelon form that A’ is row equivalent to B’. Then, by Proposition 7.6,
the matrix A is row equivalent to the matrix B wich is in row-echelon form:

0 | aig -+ ai,
B=1 1] B
0 |

(2) If a;y # 0 for some 7,1 < i < m, then we use the following steps:

() interchange the top row with i-th row.

(74) multiply the first row of the preceding matrix by ﬁ

(¢19) for all j,2 < j < m, add (—a;1) times the first row of the preceding matrix
to the j-th row.

After these steps we have the following matrix Aj:

Q2+ Qip

|
A= ,
o Ay
0|
where A} is the matrix with n—1 rows and by induction there exist such matrix
B’ in row-echelon form that A’ is row equivalent to B’. Then, by Proposition 7.6,
the matrix A is row equivalent to the matrix B wich is in row-echelon form:

Q12 -+ Q1p

|

B = |
B
|

O e
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Solving linear equations

We describe the Gauss algorithm to solve a system of linear equations.

This algorithm starts with the augmented matrix A (2) of the system of linear
equations (1) and using Gaussian eliminations reduces to the matrix B in row-
echelon form, wich is row-equivalent to A :

Gioee- Go - Gy e n
0 - 1 ... dy ay, a, | b,
0 - 0 o 1 ... ay, a, | b,
0o --- 0 1 - a. | W
0o --- 0 -~ 0 0 | b,
0o --- 0 -~ 0 0 | 0

The corresponding system of equations is

/ _ /
Tj+ o AT = b
!/ /
Tj+ T T = 0y
(4)
Tk e AT = b
0 = br+1

Consider three caces.
Case 1. If b;; # 0, then the system is inconsistent: the last equation is

0xy + -+ 0z, = b,

which has no solution.
Case 2. If ¢,11 = 0 and r = n, then the system is consistent and has a unique
solution:

T, =10,
Tpo1=b,_; — a/n—l,nb;w
e
xy=by —--—a},b,.
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Case 3. If 0., = 0 and r < n, then the system is consistent and has more than
one solution: the dependent unknowns z; ,z;,,...,x; are expressed in terms of
the remaining independent unknowns x1, ..., 2,1, %41, -, Tj—1, Tj41s-- - Tn :

! " ) " ) " ) "
Tjy = by +aly T+ Ay T A T+ ag, T

N " "
Zj, = br + CLTjTJrliEjTJrl + ...+ Ay T -

Corollary 7.8
A homogeneous system of m linear equations in n unknowns always is consis-
tent and has a non-trivial solution if m < n.

Theorem 7.9 (L.Kronecker-A.Capelli)
The system of linear equations (1) is consistent if and only if the rank of the
coefficient matriz is equal to the rank of the augmented matriz (2) :

@11 - Q1p a1 - Qip | by
rank e = rank
Am1 *°° Amn Am1 *°° Amn ’ bm

Without proof.

Corollary 7.10

1. If the system of m linear equations in n unknowns (1) is consistent and the
rank of the coefficient matrix is equal n, then the system has a unique solution.

2. If the system of m linear equations in n unknowns (1) is consistent and the
rank of the coefficient matrix is less than n, then the system has more than one
solution solution.
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Algebra lectures. Rimantas Grigutis
Lecture 8
Matrices: definitions, arithmetic operations on matrices, inverses
Arithmetic operations on matrices

Definition 8.1
A matriz over a field F is a rectangu twolar array of elements from F.

We shall use capital letters to denote matrices. The equation

a1; Aa12 Q1n

Q21 Q22 Q2n,
A= i

Am1  Am2 Amn

means that the matrix A has m rows and n columns, A is called an m x n
matrix, and the element in the i-th row and j-th column of the matrix A equals
a;; ( also written a;; = (A4);;). We will denote by M,,,,, (F) the set of all m x n
matrices over F . A matrix A with n rows and n columns is called a square matriz
of order n.

Definition 8.2

Two matrices A and B are said to be equal if they have the same size, that is
A,B € Mp,xn, (F), and (A)Z.j = (B)Z.j for 1<i<m,1<j<n.
We shall consider the arithmetic operations on matrices.

Definition 8.3

a1+ Qin bin -+ bin
Let A = : : and B = : : be two matri-
Ui Gy bt - b
ces, both have m rows and n columns. Then the sum A + B is the matrix
apg +bin -0 ap, + by,
A+ B = : : ,i.e .(A+B),; = (A), +(B);, and
Am1 + bml “or Qmp T bmn
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aip —bin o0 a, —biy
the difference A — B is the matric A — B =

Gm1 —bm1 + Qmn — bon
ie. (A— B)z’j = (A)ij - (B)ij :
Definition 8.4
aix o Qin
Let A = : : € Myxn (F) and a € F. Then the product of
Ui
aayy c--€  aay,
the matrix A by the scalar aA is the matrix aA = , i.e
N T

(aA)ij =a(A),

ij "

Definition 8.5

The matriz O in Mp,«, (F), all of whose elements are zero, is called the zero
matriz, i.e. (O);; = 0.

Proposition 8.6

Suppose that A, B, C' are matrices in M« (F) and a,b are scalars in F.Then
V1.(Associativity of addition) (A+ B)+C =A+ (A+C).
V2. (Commutativity of addition) A+ B = B+ A.

V3. (Property of zero) O+ A = A.

V4. (Additionative inverse) A+ (—A) = O.

V5. (Distributivity) (a +b) A = a A+ bA.

V6. (Distributivity) a (A + B) = aA+ aB.

V7. (Associativity)(ab) A = a (bA) .

V8.(Property of identity) 1- A = A.

V9. (Property of zero) A0 = 0A = O.

Without proof.

The system of linear equations

a11T1 + a12T9 + -+ ATy = bl
211 + Q92T9 + - - - + AonTy — bg

Am1T1 + A2l + -+ + AppZy = bm
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is equivalent to the matrix equation:

a1 a12 A1n by

a21 a22 Aon by
T + T U R 2% =

am1 Am2 Amn bm

Definition 8.7
Let A = (a;j) € Myxn (F) and B = (b;j) € Myx, (F) ( the number of colums

of the first matriz A must be equal to the number of rows of the second matrix

€ir - Cir
B). Then the product AB is the m X r matric AB = : : where
Cm1 " Cmr
Cij = (AB)ij = Z (A);s <B>sj = a;1b1; + aioboj + -+ 4 Qinbpj for all v =1,...,m
s=1
and j=1,...,r.
Example 8.8
1 -1
1.(1 2 3) 3 —4 :(1~1—|—2~3+3-1 1-(—1)+2-(—4)+3-3):
1 3
(10 0).
1 -1
2. The product | 3 —4 ( 1 2 3 ) is not defined.
1 3

3 3 5 -3 2\ (11 41

L1 2 4 7 ) U5 16

4 3 5 -3 2 y -3 2 3 5\ (-7 —11
L1 2 4 7 4 7 12) \19 34 )°
The system of linear equations

a11T1 + a12T9 + -+ ATy = bl
(2171 + Q22X + * ++ + ATy = b2

Am1T1 + A2l + -+ - + AppTy = bm
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is equivalent to the matrix equation:

@13 Q2 -+ Qin T by
Q21 Q22 -+ Q2 X2 . by
Am1 Am2 - Amn Tp bm

Proposition 8.9
Suppose that A, B,C, D, E are matrices and a, be a scalar in F.Then

S1.  (Associativity) a (AB) = (a¢A)B = A(aB) if A € My (F) and B €

Mnxr (F) :

S2. (Associativity of multiplication) (AB)C = A(BC) if A € My, (F),

B € M,x, (F) and C € M, (F)

(Distributivity) (A+ D)B = AB+ DB if A,D € M,,x, (F) and B €

Mnxr (F) '

S4.  (Distributivity) E(A+ D) = EA+ ED it E € My, (F) and A,D €

M (F).
Proof of S2.

(AB) ), =30 (4B), - (€)= X (£ (), (B)) - (0), =

Z (£ <<A>wu<;> ©),) - Z(Z (B1.001,)) -
i <(A)w 'UZ; ((B)...( )) = vil ((4),, - (BC),,) = (A(BCY),

We used the equality of numbers:

szuvzz Ay + dug + -+ dup) =

u=1"Y= u=1

(dix +dig + -+ +din) + (dm+d22+--~+d2n)+'--+(drl+dT2+---+dTn)

(diy +doy 4+ dp1) + (dip +dop + -+ -+ dpa) + -+ (dipy + don + - + dpn)
Z(dlv+d2v+"'+drv szuv
v=1 v=1 Y=

Let y1,v2, ..., yx be the linear combinations of x, xs, ..., T, :
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y1 = biixy + bioxy + - - - 4 by,
Y2 = borx1 + booxo + - - - + bopy,

Yk = br1w1 + broxy + - - + by,
and 21, 23, ..., 2, be the linear combinations of yy, Yo, ..., Y :

21 = anyr + ay2 + - - + 1Yk
Zg = Qo1Y1 + Ao2y2 + -+ + AopYk

Zm = Am1Y1 + GmaY2 + - - + il -

Then
U1 Z1 z1 Y1
Y2 - B T2 i %) — A Yo ’
Yk Tn Zm Yk

where A = (aij) S mek and B = (bZJ> € Man
and 21, 29, ..., 2, be the linear combinations of z1, o, ..., x, :

Z1 = C1171 + C12X9 + -+ C1Tn
Zg = C1%1 + Co2Tg + -+ - + Cop Ty

Ci1 - Gk
where the matrix C' = --- .- ... is equal to the product AB :
Cm1 " Cmk
1 I I
Z2 —-C T2 — AB T2
Zm Tn Tn
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Inverses

Definition 8.10

1 0 0
) o 1 --- 0 ) ) . .
The square matriz I, = o in Mpwn(F) is called the identity
0o 0 - 1

matriz of order n.

Proposition 8.11
1. If A€ My (F), then

2. If A€ My, (F), then

Theorem 8.12
If I, F) = {a-1, e M,, (F) | a € F} and the function e : F — I, (F) is
defined by e(a) = a - I,. Then e is a bijective function and e(a+0b) = e(a) +
e(b),e(a-b)=ce(a)- e(b).
We leave the proof to the reader.

Thus, the set of matrices M, (F') becomes an extension of the field F : F ¢ M,, (F).
The set M, (F') is a commutative ring, but whether it is a field? We have the
following question: is it posible for given square matrix A to find a square matrix
B such that AB= BA=1,7

Now answer this question.

Definition 8.13

A square matric A € M,x, (F) is called inversible if there exists a matriz
B € My, (F) such that AB = BA = I,,. We say that B is the inverse of A and
write B = A1,

Proposition 8.14 (inverse is unique)
If B and C are inverses of A, then B = C.

Proof. Since B and C are inverses of A, then
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AB=BA=1,and AC =CA=1,.
Thus
B=BI,=B(AC)=(BA)C=1,C=C

The next theorem list the main properties of the inversible matrices.

Theorem 8.15
If A is a matriz in M, x, (F) , then the following statements are equivalent.
1. rankA = n.

2. The homogeneous system of linear equations AX = O , where X =
I 0
and O =1 --- , has the unique solution.
Tn 0
3. det A # 0.
4. A is inversible.
a1
5. The system of linear equations AX = B , where X = | --- and B =
Ty,
b1
, has the solution.
bn

We need the following proposion.

Proposition 8.16
If A€ My, (F) and B € M,y (F), then

rank(AB) <rankA,
rank(AB) <rankB.

Without proof.

Proof of theorem 8.16.

From Corollary 7.10.1 we have that 1 < 2.

Now prove that 1 < 3. Assume that the row-echelon form of A is B, so that
A can be reduced to B by the following sequence of elementary row operations:
k times interchanges two rows; multiplying the rows by the non-zero constants
ai, ..., ar; t times adding a multiple of one row to another row. Thus
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det B=(—1) ay----- oy det A.
Now we have the sequence of equivalences:
rankA = n < rankB =n < det B # 0 < det A # 0.

Finally, we shall prove the sequence of implications 1 = 5 = 4 = 1.
1=5.
If rankA = n, then

n =rankA <rank(A|B) < n.
Thus
rankA =rank(A|B) =n

and by Kronecker-Capelli’s theorem 7.9 the system of linear equations AX = B
has the solution.
5 = 4. Let the column X; be the solution of the system of linear equations

1
AX = 0 , the column X5 be the solution of the system of linear equa-
0
0
tions AX = 1 ,...,the column X, be the solution of the system of linear
0
0
equations AX = O and the square matrix Y be a matrix of the form
1
Y = (X1| X[ -+ [X;) . Thus,
1 0 0
AY = (A% |AX| o ax) = | 0L T =
o 0 --- 1

Now we shal show that YA = I,,,ie. Y = A™%.
By Proposition 8.17 we know that
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n = rank/,, = rankAY <rankY <n

and rankY = n. By the above there exist the matrix Z such that YZ = I,,.
We thus get

YA=YAL =YAYZ=YI1,Z=YZ=1,.
4 = 1. If A is inversible, then
AATL =A"TA=1T,.
Thus
rankAA~! =rankl,, = n
and
n =rankAA~! <rankA < n,

finally, we have rankA = n which completes the proof of theorem.
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Algebra lectures. Rimantas Grigutis
Lecture 9
Complex numbers 1
Complex numbers

The set of complex numbers C can be defined with matrices from M, (R).

Definition 9.1
A complex number z is a matrixz of the form

[ a —b
=\v o )

where a and b are real numbers.

The real complex number |a] = g 2 ) is called the real part of z and the
real complex number [b] = < 8 b ) the imaginary part of z. These numbers are

denoted by Re(z) and Im(z) .

The complex number ( 0

(1)) (5 )

(1))

= [a] +i[t]

() )= A

) is denoted by 7. Thus we migth write

and
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Definition 9.2
Two complex numbers [a]+1i [b] and [c]+i[d] are defined to be equal, [a]+i[b] =
] +ild], if a=c and b=d.

The sum and product of two real complex numbers are also real complex
number

[a] 4+ [b] = [a + b] and [a] [b] = [ab]

The set of real complex numbers is a field under the matrix addition and
multiplication:
1. Associativity of addition: ([a] + [b]) + [c
2. Commutativity of addition: [a] + [b] =
3. Property of 0: |a]+ [0] = [a].
4. Additionative inverse: [a] + [—a
5. Associativity of multiplication : ([a} [b]) [c] = [a] ([b] [c]) -
6. Commutativity of multiplication: [a] [b] = [b] [a] .
7. Property of 1 [a][1] = [a].
8. Multiplicative inverse: If a # 0 then [a] [a™'] = [1].
9. Distributivity: [a] ([b] + [c]) = [a] [b] + [a] [c] -
10. [0] # [1].

Notice that

So the real complex number [a] can be identified with the real number a and
we write the complex number z = [a] + ¢ [b] as z =a + ib.
The sum and difference of two complex numbers is the complex numbers:

(a1 + Zbl) + (CLQ + ZbQ) = (CLl + ag) +1 (bl + bg)
(a1 + Zbl> — (CLQ + ’LbQ) = ((Zl — CLQ) +1 (bl — bg)

The product of complex numbers is defined so that the usual commutative and
distributive laws hold:
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(CL1 + Zbl) (CLQ + Zbg)
= ((IQ + Zbg) + (lbl) (CLQ + Zbg) = a1a92 + ay (Zbg) + (Zbl) ag + (Zb1> (Zbg)
= a1a9 + ia162 + iblag + i2b1b2 = (a1a2 + (—1) blbg) + 1 (ale + b1a2)
= (CL16L2 — ble) +1 (albg + blag) .

Thus the set of complex numbers C is a field under the matrix addition and

multiplication:

1. Associativity of addition: (z1 + z2) + 23 = 21 + (22 + 23) .

2. Commutativity of addition: .z, + zo = 2z5 + 71

3. Property of 0: z+0 = z.

4. Additionative inverse: z+ (—z) = 0.

5. Associativity of multiplication :(z122) 23 = 21 (2223) .

6. Commutativity of multiplication: z1Zo = 7927, .

7. Property of 1 :z1=z.

8. Multiplicative inverse: If z =a + ib # 0 then z7! = = T zﬁ and
zz ' = 1.

9. Distributivity: (z1,22) Z3 = 2123 + Z2Z3.

10. [0] # [1].

Geometric representation of complex numbers

The complex number z = a + ib can also be represented by the vector (a;b) in
the plane R?(called the Argand plane). Thus, the complex number i = 0+ 17 is
identified with the vector (0;1). Just as vectors in R? are added or subtracted by
adding or subtracting corresponding components, so complex numbers are added
or subtracted by adding or subtracting their real parts and their imaginary parts:

(al; bl) + (a2; bz) = (G1 Ffa b = 52)
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(aqtag;bithy)

(a;b2)

(ay;by)

If a complex number z =a + ib is viewed as a vector in R?, then the length of
the vector, written |z|, is called the modulus of z : |z| = va? + b2.

Let z =a + ib be a non-zero complex number, r = |z| = v/a? + b> > 0. Then
we have a = rcosp,b = r - sin ¢, where ¢ is the angle fom the positive real axis
to the vector z. Thus, the complex number z can be written as

z=r,p] =rcosp+irsing =r(cosp +isingp).

b
where r = |z| = va? + b? and tanp = —. This representation of z is called
a

trigonometric form of z.

The angle ¢ is called the argument of z and is denoted by ¢ = argz. The
argument of z is not uniquely; any two arguments of z differ an integer multiple
of 2m. The argument of z that satisfies —m < ¢ < 7 is called the principal argument
of z and is denoted Arg z :

b
Arg z = arctan— + 7k,
a

where

k=0ifa>0and b >0,
k=1ifa<0andb>D0,
k=-1ifa<0andb<0,

Definition 9.2
Two non-zero complex numbers z; = [r1,p,| and zy = [rq, ps] are defined to
be equal, zy = 7o, if 11 =1y Wr Y, =@y + k- 2w k€ Z.
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We show how trigonometric form can be used to give geometric interpretations

of multiplication of complex numbers.
Let

z1 = [r1, ] = 11 CO8p; + iy Sin @,
Zo = [r2, o] = T2 COS g + 19 SiN Py

Then

7179 —
172 ((COS (o1 COS Py — Sin p; Sin p,) + i (Cos ¢y sin Yy + sin @, cos @,)) =
r172 (cos (@1 + pg) +isin (o) + ¢y)) -

We obtain

Z1Zo = 1172, 91 + o) -
Thus we have shown that

212 = |z1] - |22]
arg (z122) = argz; + arg z,

an argument of the product of two complex numbers is the sum of their ar-
guments and a modulus of the product of two complex numbers is the product of
their moduli.

Let zy = a; +1b, = ( Zl _abl ) and zs = ag + iby = < Zz).Then
1 1 2

. — ay _bl as .

210 29 = b b )=

ajag —biby \ B |

( a1by + azhy > = (a1as = bib) + (arby + agh) 7.

rcos

Letz:rcosﬁJrirsinQ:( )
rsin 6§

) be the non-zero complex numbet. The

cosp —singp

. > has a modulus 1 and
singp  cosp

complex number z, = cos¢ + isinp = (

an argument ¢, so the product
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( cosp —singp ) ( rcos 6 )

Z,Z = . . =

sinp  cosp rsin 6
rcosfcosp —rsinfsing \ [ rcos(0+ )
rsinfcosp+rcosfsing |\ rsin(fd+ @)

has the same modulus as z and its argument is 6 + ¢ : multiplying z by z,

cosp —sing

) is called a rotation
sinp  cosp

rotates z counterclockwise by ¢.The matrix <

by ¢ matriz.

Definition 9.3
If z = a+ b, then the complex conjugate of z is the complex number defined
by Z =a — 1b.

We list some of the properties of the complex conjugate in the following propo-
sition. The proof follow from the definiton.

Propsition 9.4
1. z1+29 = Z1 + Zo.
Zo = Z7 - Zo.
) =
2

-7 = |z]°.

N
—
NI

=W
N —~
NI
N

Let now z = [r,¢] and z~! = [g,4]. Then

z-2" =[r,¢] (¢, =[r-qp+¢] =1=[1,0],

ie.
rog=1, o+ =0+27k, keZ,
and
g=r"1 Y =—p+ 2k, k€ Z for example ) = —¢p.
Thus

z=r(cosp+ising),r#0=
z ' =711 (cosp —isinyp)
{ Z=r(cosp —isiny)
Z-Z_:T2 =
zZ Z 1

1
Z_1 — — — = —7.

z Z-Z 12 12
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Geometrically, the multiplicative inverse z—! is obtained by reflecting z in the
1
real axis and stetching by a factor of —.

r
We show how trigonometric form can be used to give geometric interpretations
of division of complex numbers.

Let
z1 = [y, 1] = r1cos +irysin g
Zy = [, pa] = racOS Py + iTosin @,
Then
VA 1 1 _
— =Z1'Z = %1 - —7
Zo 1" 43 1 7”% 2
" : : , , .
— ((cos ¢y €os @y + sin @y sin p,) + 1 (€os @y sin p, — sin @, cos p,)) =
)
112 (cos (1 — p) +isin (o) — ¥,)).
We obtain

Zr N
Zo - T27g01 P2 -

Thus we have shown that

Z1 _ |zl
Zo ‘ZQ’
()
arg | — | = argz; — argzs
Zy

an argument of the quotient of two complex numbers is the subtract of their

arguments and a modulus of the quotient of two complex numbers is the quotient
of their moduli.

If n is a positive integer and z = 7 (cos ¢ + isin ¢) then

z"=2z-2---2=1" (cos<g0+g0+---+<p)+isin<gp+gp+---+gp))

n-factors n-terms n-terms

and

z" = 1" (cosny + isinng) .
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If n is a positive integer and z = 7 (cos ¢ + isin ¢) then

_ _1\n _ _ _
z":(z 1) =g lg=l... 4271
n-factors

:T_n (COS (_gp_gp__gp) +ZSIH(_§0_§0__SO)>
n-terms n-terms

al

z " =1""(cos (—ny) +isin(—nyp)).
If r=1,n € Z, then we have z = cos ¢ + isin ¢ and the equality
(cosp +isinp)" = cosnp + isinng

is called De Mowvre’s formula.
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Algebra lectures. Rimantas Grigutis

Lecture 10

Complex numbers: nth roots of complex numbers. Roots of 1.
nth roots of complex number

Definition 10.1
Let n be an positive integer. An nth root of the complex number z is a complex
number w such that w" = z.

Theorem 10.2
Let n be an positive integer and z = r (cos ¢ + isin) . Then there are exactly
n different nth roots of z:

o+2tk . @+ 27k
— +isimm——

Wk:\"/F(cos ), k=0,1,2,...,n—1.

n

Proof. Let w = g (cos® + isin®)). Using De Moivre’s formula, we get
q" (cosnip +isinniy) = r(cosp + isiny) .

The equality of two complex numbers shows (Definition 9.2) that

r=r o q=4F
and

n-y =p+2rk or @D:%m, keZ.
Thus

27k 27k
W:Wk:W(Cosu+isinu), kel
n n

If k1, ks € Z and
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o+ 21k 90+27rk2+
n B n

27 - 1, leZ
then
ki1 = ko (modn)

and £ =0,1,2,...,n — 1 produce different values of w.

Roots fo unity

An important special case of Theorem 10.2 is the numbers called the roots of
unity. By unity we mean the complex number 1 = 1 + 0.

Definition 10.3
The roots of equation w™ = 1 are called nth roots of unity. The set of nth

roots of unity is denoted by U (n).
1 has the trigonometic form
1 =1[1,0] = cos0 + isin0.
Thus, nth roots of unity is given by

2rk
Ek:cosljtisini, k=0,1,2,...n— 1.
n n

The nth roots of unity are located on the unit circle of the complex plane.
They form the vertices of a n-sided regular polygon with one vertex on 1.

Definition 10.4
An nth root of unity € is called primitive if €™ # 1 with m < n.

2 2
The complex number £; = cos — + isin — is a primitive nth root of unity
n n
with all n > 1.

Theorem 10.5
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s 2k
A nth root of unity €, = cos — + isin — is primitive nth root of unity if
n n

and only if two integers k and n are relatively prime, i.e. ged (k,n) = 1.

2rk 27k
Proof. Let ¢, = cos il + 7sin T s primitive nth root of unity and d =
n n
ged (k,n) :n =nyd, k = kyd. Then

2rk . . 2wk 2rkid .. 27wkid 2k, .. 27k
€ = COS —— 4+ 1 8In —— = COS +2s1n = Ccos +781n
n n ny n ny ni
and
e = 1.

Since ¢y, is primitive, we obtain n = n; and d = 1. Thus, two integers k and n
are relatively prime.
Conversely, suppose that two integers k and n are relatively prime and €} = 1.

2
It Tkm

n
of n.Since k and n are relatively prime, we obtain that m is a multiple of n and
m > n. Thus, ¢; is primitive nth root of unity.

= 2rm with integer r, then km = nr and the integer km is a multiple

A

How many primitive nth roots of unity are there, for given n?
This question is answered be the proposition:

Proposition 10.6
The number of primitive nth roots of unity is ¢ (n), where ¢ is the Euler
function.
Proof is obvious.

Example 10.7

Primitive nth roots of unity
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Primitive nth roots of unity
€1,€&2

€1,€3

€1,€2,€3,€&4

€1,€5

€1,€2,E3,E4,E5,E6
€1,€3,€5,€7
€1,€2,84,E5,E7,E8
€1,€3,€7,&9
€1,€2,€3,€4,€5,6,€7,€8,€9,€10
€1,€5,E7,€11

AS)

2l oo ] oo o] | rof hof—
< S

O 0| || T = W[ 3

= =
=

—_
[\

Proposition 10.8
) 2 . 2k oo )
A nth root of unity €, = cos — + isin — s primitive mth root of unity,
n n

where m = g and d = ged (n, k).

n k
Proof. Since two integers n; = 7 and k; = — are are relatively prime then by

21k 2rk 2rk 2rk
Theorem 10.5 the integer £, = cos il + 7sin T os 2 + i sin T
n n ny ny

= 5761

is primitive n;th root of unity.
A

Proposition 10.9

1. If air peU(n), then a-5€U(n).

2. If a €U (n), tthen a=t € U (n).

3. If € is primitive nth root of unity and o € U (n), then a = ¥ with some
ke N.

4. 1If € 1s primitive nth root of unity and [ is an nth root of the complex
number o, then the numbers €°8,e'3,e%8, ....,e" 18 are all nth roots of «.

Proof. 1. If &« and 5 € U (n), then o™ = 5" = 1. Thus (af)" = a"p" =1
and a- €U (n).

2. If « € U(n), then a® = 1. Thus ()" = a™ = (o) = 1 and
ateU(n).

3. If £ is primitive nth root of unity, then (e)" = (e")" = 1 and the number
ek € U (n) . Suppose now that ¢¥ = ¢™ with 0 < k < m < n —1 < n. Then
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g™k =1 with 0 < m — k < n, a contradiction because ¢ is primitive nth root of
unity. So the numbers 1 = €,¢!, 2, ..., " ! are all distinct nth roost of unity.

4. Let " = v and € be nth root of unity. Then (¢¥8)" = (¢¥)" " =1-a=a
and €3 is an nth root of the complex number o with all k¥ € Z.Suppose now that
b =emB, with0<k<m<n-—1<n.Thene™* =1with0<m—k <n,
a contradiction because ¢ is primitive nth root of unity. So the numbers f =

€08, e1B,e%p, ..., e" 13 are all distinct nth roots of a.
AN
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Algebra lectures. Rimantas Grigutis
Lecture 11

Groups. Definitions and examples Basic properties Isomorphism of groups
Definitions and examples

Definition 11.1

A binary operation x on the set G is a function G x G — G that assigns to
each pair (g1, 92) € G X G a unique element g1 * g2 in G. A group (G, %) is the a
set G with a binary operation x that satisfies the following axioms:

G1. The binary operation is associative:

g1 % (92 * g3) = (g1 % g2) * g3 for g1,92,95 € G.

G2. There exist the identity element e € G, such that for any g € G

exg=gxe=g.

G3. For each g € G there exist an inverse element in G , denoted by g%,

such that

gxgt=gtxg=yg.

A binary operation * on the set G is commutative if and only if g1 * go = g2 * g1
for all ¢1,9o € G. A group (G, *) is commutative if its binary operation * is
commutative.

A group is finite if it contains a finite number of elements. The order of a
finite group is the number of elements that it contains. If the group G contains n
elements, we write |G| = n.

Example 11.2

1. The integers Z with the usual addition + is an infinite commutative group.

2. The rational numbers Q with the addition is an infinite commutative group.

3. The real numbers R with the addition is an infinite commutative group.

4. The complex numbers C with the addition is an infinite commutative group.

5. The set of all congruence classes modulo m ,Z,, , with the addition is a
finite commutative group of order m.
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6. The nonzero integers Z with the usual multiplication - is an infinite com-
mutative group.

7. The nonzero rational numbers Q with the multiplication is an infinite
commutative group.

8. The nonzero real numbers R with the multiplication is an infinite commu-
tative group.

9. The nonzero complex numbers C with the multiplication is an infinite
commutative group.

10. The set of all congruence classes modulo m, witch have multiplicative
inverses, U,, with the multiplication is a finite group of order ¢ (n) ,where ¢ is the
Euler function.

11. The sets of matrices My, (Z), Myxn(Q), Myxn(R), M5, (C) whith the
addition are infinite commutative groups.

12. The set of matrices M,y (Z ,,) with the addition is a finite commutative
group of order r - n - m.

13. The sets of the inversible matrices over the rational numbers, over the real
numbers, over the complex numbers GL(n,Q),GL(n,R),GL(n,C),GL (n,Z,)
,here p is prime, with the addition are infinite noncommutative groups.

14. The set of the inversible matrices over the rational numbers GL (n,Z,)
,here p is prime, with the multiplication is a finite noncommutative group of order
n?(p—1).

15. The set of nth roots of unity U (n) with the multiplication is a finite
commutative group of order n.

16. The set of the permutations S,, with the multiplication of permutations is
a finite group of order n!.

Basic properties of groups

Proposition 11.3
The identity element in a group G is unique.

Proof. Suppose that e and ¢’ are both identities in G : ex g = g x e = g and
exg=gxe =gforall g€ G.If eis the identity, then e = e x ¢’; if € is the
identity, then e x ¢/ = ¢/.Thus e = €'.

A

Proposition 11.4

Inverses in a group are unique.
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Proof. Suppose that ¢’ and ¢” are both inverses of ¢ in a group G and e is
the identity in G . Then ¢’ = ¢'xe=¢' x(gx¢") = (¢’ xg)xg" =exg" = g".
A

The following proposition is fundamental.

Proposition 11.5( right and left cancellations)
Let G be a group and a,b,c € G. Then axc = bxc implies a = b and cxa = cxb
implies a = b.

1

Proof. Multiplying both sides of a x ¢ = b* ¢ by ¢~ , we obtain

1 1

axcxc t=b*xcxc”
a=b.

Multiplying both sides of ¢ x a = ¢ * b by ¢!, we obtain

clxecxa=ct

a=1"b

xcxb

A

Proposition 11.6
Let G be a group and a,b € G. Then the equations a xx = b and xxa = b
have unique solutions in G.

Proof. Suppose that
axx=>0.
Multiplying both sides by a~!, we obtain
alxaxx=a'lxb

exr=alxb
r=a"txb.
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To show uniqueness, suppose that x1 and x5 are both solutions of axx = b.Then

vy =(at*xa)xz=al*x(a*xz)=at*x(b) =al*(a*xz) = (a" xa)xxy =
To.

The proof for the existence and uniquess of the solution of x *a = b is similar.

A
Isomorphism of groups

Definition 11.7

Let (G,*) and (H,o) are two groups. A map ¢ of a group G into a group H
is a isomorphism if

1. FEach element of H has at most one element mapped into it: the equation
¢ (g1) = ¢ (g2) implies g1 = ga for all g1, 92 € G.

2. Fach element h of H has at least one element g of G mapped into it:
¢ (g) = h.

3. ¢ (g1%92) = ¢ (g1) 0 d(g2) for all g1,92 € G.

Is said to have a isomorphic groups and written G ~ H.

Proposition 11.8

~ 15 an equivalence relation in any set of groups:
( i) if G~ H, then H~ G,

( ’l) Zf Gl ~ GQ, and G2 ~ G3, then G1 ~ Gg.

Proof is obvious.

11.9
a . . a b
<{< b ) } ) . Isomorphism: a+ib — ( b 4 ) .

b
» o= ({(° >€M2<R>,az+b2#o},.).Isomorpmsm:
)

) ~
a+zb—>( “ b>
—b a
€ My (R } >.Isomorphism:a—><g 2)

o=

Example
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Algebra lectures. Rimantas Grigutis
Lecture 12
Vectors. Dot product and projections. Distance from a point to a line in the plane
Dot product and projections

Definition 12.1
Let u and v are two vectors in 2-space or 3-space and ¢ be the angle between
u and v. The dot product u - v is defined by

u-v=|ul-|v|cosp if u#0and v#0
and
u-v=_0 fu=0o0rv=0.

If u = (u3,u2) and v = (vy,v,) are two vectors in 2-spaces, then the dot
product of u and v is defined by

u- Vv =uiv1 + ugvs.

If u = (u1,us,u3) and v = (v1,v9,v3) are two vectors in 3-spaces, then the
corresponding formula is

UV =ujv1 + UV + Uzvs3.
The length ||u|| of a vector u = (uy, ug, u3) is defined by
Jul| = Vu-u=/u?+u3+ us.
The angle ¢ between two nonzero vectors u and v is then defined by

u-v

CoSp = 0<p <.

[l - fIvI
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Since ||ul| > 0 and ||v|| > 0 it follows that cos ¢ has the same sign as u-v.
Thus ¢ is acute if and only if u-v >0, ¢ is obtuse if and only if u-v <0, and

™
¢ = — if and only if u-v =0. In other words, two vectors nonzero vectors u and

v are orthogonal (perpendicular) if and only if u - v =0.

Proposition 12.2
Let L : ax + by = ¢ be the line in 2-space. Then the nonzero vector n = (a,b)
is perpendicular to L.

Proof. Let P; (x1,y1) and Ps (22, y2) be distinct points on the line L :

axry + by, = c
axs + bys = c.

Subtracting the equations, we have

~—

a(ry—x1) +b(y2 — 11
(a,b) : (I2 —Z1,Y2 — 1) =
n (rg — 21,92 — y1) = 0.

Since the nonzero vector Py P, = (x3 — x1,y2 — y1) and the line £ are parallel

it follows that n = (a,b) is perpendicular to L.
A

Proposition 12.3

Let L1 : a1z + b1y = ¢1 and Ly 2 asx + by = co are two lines in 2-space. Then
1. Ly s parallel to Loy if and only if ai1bs — bias = 0;

2. Ly 1is perpendical to Lo if and only if ajas + biby = 0.

Proof is obvious.

As seen in Figure the vector vva W ‘;u is perpendicular to u. It is
[al[ flafl fu _—
called the orthogonal projection of v on u and it is denoted by proj,v =—-=u.
[[ull
The lenght of the orthoganal projection of v on uis ||proj,v|| = |1|1| : ﬁ’| = [|u|| cos .
u
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v

[
»

proj.v

Let i=(1,0,0),j=(0,1,0),k =(0,0,1) are the standart unit vectors in 3-
space and u = (uq, ug, ug) . Then we can write u =u;i + usj + usk,where

up = u-i=|lprojul| = [|ul| cos ¢y,
us = u - j =||projjul| = [|ul cos s,
uz = u -k = || projul| = [Jul[ cos p;.

Here the angles ¢, ¢y, o3 between u and the vectors i, j, k respestively are
called the direction angles of u and the numbers cos ¢, cos ,, cos ¢4 are called

the direction cosines of u .
We have also
u-u=|ul-|ulcos0
u? 4+ u3 + u2 = ||ul|
(l[ull cos ©1)* + ([lull cos ©5)* + (J|ull cos w3)* = [|ul
[[ul|* (cos? @, + cos? @, + cos? p5) = [Jul|?
cos® p; + cos? g, + cos? p3 = 1.

Distance from a point to a line in the plane
Proposition 12.3
The distance D between the point Py (zo,vo) and the line L : ax + by = ¢ is

defined by the formula
laxo + byo + ¢

D:
Va? + b?
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Proof. Let P (x1,y;) be any point on the line £ :

axry + by, = c.
Let P be the initial point of the vector n = (a, b) . By proposition 12.2 the vector

n is perpendicular to the line £ and the distance D is equal to the leght of
projn PPy :
. ‘PPO : n’
D= HprojnPPOH =1 _ _ 1=
]|
|(zo — 21,90 — ¥1) - (a,b)] _ |(zo —x1) @+ (yo — y1) b|
Va2 + b? Va2 + b2

|zoa + yob — (x1a 4 y10)| _ laxo + byo + |
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Algebra lectures. Rimantas Grigutis
Lecture 13
Vectors. Cross product. Geometric interpretation. Scalar triple product

Cross product

Definition 13.1
Let u = (uq,us,u3) and v = (v1,vy,v3) are vectors in 3-space. Then u X v,
the cross product of u and v, is defined by

i j k
Uy U3 |. Uy usg |. Uy Ug
uXv=|u Uy Uz |= i— j+ k.
Vg U3 U1 U3 U1 U9
U1 V2 U3
Remark 13.2
Uz U3 Uy us Uy U2
l.uxv= , , =
Va2 U3 V1 U3 V1 Vg

(U203 — UzV2, U3VL — U3, ULV — UpV1)
2. The dot product of two vectors a vector and the dot product is a scalar.

The cross product of two vectors has the following properties which follow
from properties of determinants.

Proposition 13.3
Let u, v, w are vectors in 3-space. Then the leght of

LLu(uxv)=0 (u x v is orthogonal to u)
2.vi(uxv)=0 (u x v is ortogonal to v)
3. Jux v = |Jull?||v])* = (u-v)? (Lagrange identity)

4 uxv=—(vxu)

5.ux (v+w)=(uxv)+(uxw)

6. (u+v)xw=(uxw)+(vxw)

7.k(uxv)=(ku) x v=ux(kv)

.ux0=0xu=0

9. uxu=0.

The proof follow from definition 13.1 and properties of determinants

Proposition 13.4
Let i,j,k are the standart unit vectors in 3-space. Then it is true
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ixi=0 ixj=k ixk=—j
jxi=-k jxj=0 jxk=i .
kxi=j kxj=-i kxk=0

The proof is left to the reader.
Geometric interpretation

Theorem 13.5
Let u and v are vectors in 3-space. Then the leght of u X v is equal to the
area of the parallelogram determinated by u and v.

Proof. Let ¢ be the angle between u and v.Then using Lagrange identity
and the definition of dot product of u and v we have

lwx v = JJul* [o]* — (u- v)*
= [lull* lo]* = Jlull® Jo]* cos® &
= [Ju* [Jv]* (1 — cos )
= [Jull* [Jv]* sin® .

But sin > 0 since 0 < ¢ < 0, so we have
[u x v|[=|[u] |v] sin .

We know that the area S of the parallelogram determinated by u and v is
given by

S = (base) (altitude) = [Ju|| ||v||sinp = |ju x v|| .
A

We know that the cross product u x v is ortohogonal to both u and v.If u
and v are nonzero vectors, it can be shown that the direction of u x v can be
determined using the right hand rule: let ¢ be the angle between u and v, and
suppose u is rotated through the angle ¢ until it coincides with v. If the fingers
of the right hand are cupped so they point in the direction of rotation, then the
thumb indicates the direction of u x v :
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uxv
u
@
\/

Scalar triple product
Definition 13.6
Let u , v and w are vectors in 3-space. Then we call u- (v x w) the scalar

triple product of u,v and w.
If u = (u1,us,u3), v=(vy,v9,v3), w = (wy, ws, ws) then

Vg U3 U1 U3 U1 U2
u (vxw)=u - k
Wo W3 w1 wWs w1 Wa
Vg U3 1 U3 U1 U2
u (vxw)= Uy — U + Us
Wy W3 w; w3 w1 W2
U Uz U3
w(vxw)=| v vy 3
wp W2 wWs
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The scalar triple product of vectors has the following property which follow
from properties of determinants:

u (vxw)=w (uxv)=v(wxu)

In the next proposition is geometric interpretation of scalar triple product of
vectors.

Proposition 13.7

Let u , v and w are vectors in 3-space.

1. The absolute value of u- (v x w) is equal to the volume of the parallelepiped
in 3-space determined by the vectors u , v and w.

2. The volume of the tetrahedron determined by the vectors u , v and w is
tha (v xw)l.

3. u- (v x w) = 0 if and only if the vectors u , v and w lie in the same plane.

Definition 13.8
If scalar triple product u- (v x w) # 0, then the set of three vectors u , v and
w s called base in 3-space.

The following special charakterization of the base in 3-space is fundamental.

Theorem 13.9
Let ay,a,, a; be the base in 3-spase. Then for every vector u there exist unique
scalars Ay, Mg, A3 such that

u = )\131 + )\Qag + )\333..

Proof. Let a; = (6111,6112,6113) ydg = (a21,@22,a23) , a3 = (CL317@32,G33)- If for
u = (uq,ug,u3) there exist scalars A1, Ay, A3 such that

u = )\131 + /\Qag + /\33.3
then
(ur, ug, usz) = A1 (a11, 12, @13) + A2 (G21, @22, ass) + As (asi, asz, ass)

and
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A1a11 + Agagr + Azas; = g

A1G12 + AaGoe + Agasy = us .

A1a13 + Aaagz + Azazs = ug
11 A21 A3z

The coefficient matrix A = a1z Qoz (32 of the system is inversible be-
@13 Aa23 G33
cause
det A = det AT = e, - (ey x e3) # 0.

Using Cramer’s formula we get:

U
U2
us

det

21
22
Q23

asi
as2

ass u - (a2 X a3)

A=

ail
a2
ais

det

11
Q12
a13

det

21
22
23
Uy
U2
Uusg

a3 - (az x ag)
a3z
ass
a3y
a3z

ass . (u X 3.3)

Az

ail
12
a13

det

11
Q12
a13

det

a21
22
23

a21
a22
a23

a3 ’ (32 X 33)
a32

a33

U
U2

Us . (a2 X ll)

ail
a2
ais

det

e e e

and

u- (ay x a3)

Q21
22
@23

a; - (u x ag)

asy ap - (az X 33)
a32

a33

u=
aj - (32 X a3)

a1—|—

aj - (a2 X 3.3)

32+

To show the uniqueness, suppoese that also
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a; - (ag X u)
aj - (3.2 X a3)



u =Xa; + \ya; + \as.
Then cleary we have
(A —MN)ar+ (Mg —Ay)as+ (A3 — A\3)az = 0.
Multiplying through by as; x as in the last equality, we have

()\1 — )\,1) (a1 . (ag X a3)) = 0.

But
a; - (ag x ag) #0,
then
A=A =0
and
A = A

Similarly, we get Ay = A, and A3 = \j.
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Algebra lectures. Rimantas Grigutis
Lecture 14

Planes in 3-spaces
Planes in 3-spaces

Theorem 14.1

Let P be a plane in 3-space. Then there exist the constants a,b,c,d and a,b,c
are not all zero, a>+b? + ¢ # 0, such that each point P (x,y,2) in P satisfies the
equation ax + by + cz +d = 0.

Proof. Let Py (xo; yo,20) be the point in P and let n = (a; b; ¢) be the nonzero
vector that is perpendicular to the plane P (the vector n = (a;b; ¢) is called the
normal to the plane P) . If P (z,y, 2) € P then the vector Po—ﬁ: (x — xo;y — Yo; 2 — 20)
is perpendicular to the vector n :

This equation can be written as

a(x—x0)+b(y—1yo) +c(z—20)=0.
ax + by + cz + (—axg — byo — czg) =0
ar + by +cz+d=0,

where d = —axy — byy — czg.
The last equation is called the general form of the equation of the plane P.
A

Theorem 14.2

If a,b,c,d are the constants and a,b, c are not all zero, a®> +b* +c®> # 0, then
there exist a plane P such that each point P (x,y,z) in P satisfies the equation
ar +by+cz+d=0.

Proof. Is given that a? + b*> + ¢® # 0. Assume that a # 0. Let
(z1;91521) = (—5;0; 0) )
(72, Y2, 22) = (—3’ - Z; 1;0),

(3,93, 23) = (=2 — £;0;1)
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be three distinct solutions of the equation ax +by +cz+d =10

a$1+by1+021+d:0
ax2+by2+022+d:0
axsz + bys + cz3 +d = 0.

Subtracting the second equation from the first equation and the third equation
from the first equation we have

a(wg—x1) +b(y2—11) +c(za—2)=0
a(xs—x1)+b(ys —y1) +c(z3—2) =0

Let Py (x1,y1,21), Ps (22,92, 22) , P3 (23,93, 23) be three points in 3-space then
== —
the vector n = (a, b, ¢) is perpendicular to P,P; and P3P :

e
n- PPy =0
1’1'P3P1 =0

Since the points P;, P,, P3 are not in line( non-collinear points), then there is
only one such plane P , containing the following points. If P (z,y,2) € P then
—

the vector ]3—151 is a linear combination of P, P; and PP :
— —_— —_—
PP1:SP2P1+tP3P1 .
—_—
Then the vector n = (a, b, ¢) is perpendicular to PP, :
—
PP{-n=0
or
a(r—z1)+bly—wy)+c(z—2)=0
and
ar +by +cz+d=0.
A

Corollary 14.3
1. Let Py, P5, P; be three non-collinear points. Then the plane P through
Pl,Pg,Pg is given by
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PP1:SP2P1+tP3P1, S,tER.

This is called the vector form of the equation of a plane.
2. Let P, P», P; be three non-collinear points. Then the plane P through
Py, Py, P5 is given by

PP, - (132131 X P3P1) — 0,

_— —— — —
where the vector (P2P1 X P3P1) = n is perpendicular to PP, and P3P, and

therefore to the plane P.
This is called the normal form for a plane.

Now we will discuss some of geometric possibilities of the plane P : ax + by +
cz+d=0.

1. Let a = b= 0. Then the vector n = (0;0;¢) is parallel to the Oz axis and
the plane P is parallel to the (zy)-plane.

2. Let b =c = 0. Then the vector n = (a;0;0) is parallel to the Oz axis and
the plane P is parallel to the (yz)-plane.

3. Let a = ¢ = 0.Then the vector n = (0;b;0) is parallel to the Oy axis and
the plane P is parallel to the (xz)-plane.

4. Let a = 0,b # 0, ¢ # 0.Then the vector n = (0; b; ¢) is orthogonal to the Ox
axis and the plane P is parallel to the Oz axis.

5. Let a # 0,0 = 0, ¢ # 0.Then the vector n = (a;0; ¢) is orthogonal to the Oy
axis and the plane P is parallel to the Oy axis.

6. Let a # 0,b # 0,c¢ = 0.Then the vector n = (a; b;0) is orthogonal to the Oz
axis and the plane P is parallel to the Oz axis.

7. Let d = 0. Then the plane P passing through the origin (0;0;0) .

1
8. Leta #0,b+#0,c#0,d # 0. Multiplying through by (_c_i> in the equality
ar + by + cy +d = 0, we have

or



where

From here we can see that the plane P intertcepts the coordinate axes are
r=a,y=pand z = .

Now we find a formula for the distance from a point to a plane.

Proposition 14.4
Let P' (2’595 2") be the point in 3-space and P be the plane .ax+by+cz+d = 0.
Then the distance D between P’ and P is

D= lax’ + by + ¢z’ + d|
Va4 b2+ c?
Proof. If P (z;y;2) € P and A is the initial point of the normal to P, then
———
the distance is equal to the lengh of the orthogonal projection of PP’ on :

oo
. ‘PP -n(
D= ‘ proj,PP'|| = ———
]|
But
—
PP = (' —x,y —y,2' — 2)
—
PP m=a(s'—2)+b(y —y)+c(z —2)
n =V TR
Thus

o (2" —2)+b(y —y) +c(z' —2)|

Since P (z;y;2) € P its coordinate satisfy the equation of the plane P :

D —

ar+by+cz+d=0

or
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d = —axy — by, — cz.

Thus

ez’ + by + e + (—ax — by —cz)|  |ax' + by + 2’ + d

D
Va2 +b* +c2 va?+b* +c?

Now we will discuss some of geometric possibilities of two planes.

Proposition 14.5

Let Py be the plane ayx + b1y + c1z + dy = 0, and let Py be the plane asx +
boy + coz +dy = 0. Then

1. Py is parallel to Py if and only if

a b o

a2_5_02'
2. Py is orthogonal to Ps if and only if
a1a9 + b1bs + c1co = 0.
3. The angle ¢ between Py and Py satisfies the equation

a1as + blbg + c1C9
Va4 b2+ c3/a3 +b: + 3

CoSp = <<

Proof. Let n;=(ay,by, ;1) be the normal to Py, and let ny = (ag, be, c2) be
the normal to Py. Then
1)P1 ||P2<:)n1 ||Il2<:,>ﬂ:b—lzc—l
a2 by &)
2) Pl1lP<—mn J_I’IQ<:>1'11'I12:O<=>6L1(12+b1b2+0102:O.
3) The angle ¢ between P; and P, is the angle between n; and ny. Thus

n; - nNo a1as + ble “+ c1Co
cos p = =

[ el a2+ 02+ 3+ b3+
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Now we will discuss some of geometric possibilities of three planes.

Proposition 14.6
Let Py be the plane aix + byy + c1z +dy = 0, let Ps be the plane asx + by +

coz + dy = 0 and let Ps be the plane asx + bsy + c3z + ds = 0. Then
aq b1 C1
1. The planes P1,Ps,P3 intersect in one point if and only if | as by co | # 0.
az bz c3
ap b
2. The planes P1,P2,Ps are parallel to one line if and only if | as by co | = 0.
az by c3

Proof. Let ny=(ay,b;,c;) be the normal to Py, let ny = (ag,be, ) be the
normal to Py and let ng = (ag, bs, c3) be the normal to P3 . Then
1.
The planes P;,Ps,P3 intersect in one point
if and only if
the normals ny, ny, and n3 are not parallel to one plane
if and only if
n; - (ng x n3) # 0
if and only if
a b o

a9 bg Cy 7é0

as by c3

The planes P;,P,,Ps are parallel to one line

if and only if
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the normals n;, ny, and n3 are parallel to one plane
if and only if
n; - (ny xn3) =0
if and only if

ap by
a9 b2 Cy | = 0.
as by c3

Here are more details.

Let Py be the plane a1z + byy + c12 + dy = 0, let Py be the plane asx + boy +
coz + dy = 0 and let P3 be the plane azx + b3y + c32 + d3 = 0. Let A be the
coefficient matrix and let B be the augmented matrix of the system

o +biy+ciz+di =0
s + by + coz +dy = 0
a3x+b3y+cgz—|—d320.

If rankA =1, rankB = 2, then
1. Three parallel planes:

7)1”7)2”7)3 <~
n||n;||n; <~
a _bh _a £ d1
az 22 c2 zz
C
iof-dad

az _ by _ c2 £ dy
ag_bg_cg?édg

2. Two coincident planes parallel to a third plane:

Py =Ps||P3 <~
n||n;||n; <~

a b _a_d
a2 b2 c2 do
a_l_b_l_c_l%d_l
a3~ b3 c3 ds*
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If rankA = 2, rankB = 3, then
3. Two planes parallel:

PlHPQ H'P;), <
n|n; fn3 <~

a b _ayd
a2 ~ b2 co 7& da
4. Three planes with no common intersection:

’P1mlpzm733:@ <
n; §f ny f nz and n; - (ny X n3) = 0.

If rankA = 3, then
5. Three planes intersecting at a point:

Plﬁpzﬂpgz{P} <
nl'(ng ><n3)7§0.

If rankA =rankB = 1, then

6. Three coincident planes:

P1 =Py ="P3 <—
n; =—ny, =n3 <—

a _ b _a _d
az ~ by ca do
@ _ b _a _d
a3 ~ b3~ ¢z d3”

If rankA =rankB = 2, then
7. Two coincident planes intersecting a third plane:

,P1:’P2H'P3 <
n; =n; jfng <

a _ b __a _d

az b2 co ~ da

8. Three planes intersecting in a line:
7)1ﬁ732ﬂ733 = L aline <
n; Jf ny, ny fnz, ny Jf ng and n; - (ny X n3) = 0.
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Algebra lectures. Rimantas Grigutis
Lecture 15
Lines in 3-spaces
Lines in 3-spaces

We shall now show how to obtain equations for lines in 3-space.

Definition 15.1

The line L in 3-space is the intersection of two given planes P, Py : L =P1N
Ps. Let Py be the plane ayx + byy + c1z + dy = 0, let Py be the plane asx + boy +
coz + dy = 0. Then the system

o +biy+cz+di =0
as® + boy + coz +dy =0~

is called the general form of the equation of the line L.

Let Py (xo; yo.20) be the point in the line £ and let v = (k;[;m) be the nonzero
vector that is parallel to the line £ (the vector v = (k;l;m) is called the direction
vector for the line £) . If P (x,y, z) € L then the vector Pﬁ: (x — To;y — Yo; 2 — 20)
is parallel to the vector v :

—

P()P = tV, teR. (].)

This equality is called the vector form of the equation of the line L.
In termes ao coordinates, the vector form of the equation of £ can be written
as

(x — zo;y — Yo; 2 — 20) = (tk;tl;tm), teR
or
x:xo—i—tk
y=1yo+1tl

z=2zyg+1tm
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where t € R. This equations are called parametric equations for L.
Equivalently, equation (1) becomes

L—Zo Y—Y <Z— %

L1 m

These are called canonical equations for the line L.

Remark 15.2

Let ny=(ay, by, ¢1) be the normal to Py, let ny = (ag, b, c2) be the normal to
P,. Then v = n; X ny is the direction vector for the line £ = P; N Ps.

Now we will discuss some of geometric possibilities of the line £, which the
direction vector is v = (k,[,m).
l. k=0 < v-i=0 <= L is parallel to the (yz)-plane.
=0 < v-j=0 < L is parallel to the (zz)-plane.
m=0 <= v-k=0 <= L is parallel to the (zy)-plane.
k=1=0 <= v | k < L is parallel to the Oz axis.
l=m=0 <= v | i <= L is parallel to the Oz axis.
k=m=0 <= v|j <= Lis parallel to the Oy axis.

AR

Now we will discuss some of geometric possibilities of two lines.

Proposition 15.3
Let L, be the line rTn _YTn_E7A and let Lo be the line T

1 L ma 2

Yy—9% ==
l mo ’

2
Then
1. Ly s parallel to Lo if and only if

]{71 ll @

kf_z - E - mo h
2. Ly 1s orthogonal to Lo if and only if
kiks 4+ lils + mimy = 0.
3. The angle p between L1 and Lo satisfies the equation

k‘lkg + lllg + myme
\/kl +ll +m1\/k‘2+lg+m2

0<p<m.

CoSp =

90



4. L1 and Lo is in one plane if and only if

ky L ma
ko ly My =0.
Tg —T1 Y2 —Y1 22— 21

5. L1 and Ly is not in one plane if and only if

k1 I ma
k‘Q l2 meo 7£ 0.

Tog—T1 Y2—UY1 22— 21

Proof.

L1 is parallel to Lo
if and only if
vy = (k1,11,mq) is parallel to vy = (ko, l3, m2)
if and only if

k:l_ll_ml
k)g_lg—mg'

L1 is orthogonal to Lo
if and only if
vy = (k1,11,mq) is orthogonal to vy = (ko, I3, m2)
if and only if
kiky + lils + mimy = 0.

3. The angle ¢ between £; and L is the angle between v; = (kq,{;,m;) and
Vo = (]CQ, lg, TTLQ) .Thus
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klk’g + lllg + mimo
\/kl +l1 +m1\/k2+lg+m2.

CoS =

L1 and L, is in one plane
if and only if

% . .
vi = (ki,l1,m1) , vo = (kg,ly,mo) and Po Py = (23 — 1,2 — 41,22 — 21) isin
one plane

if and only if

—
V1'<V2><P2P1):O.

L1 and L, is not in one plane
if and only if

N _
vi = (k1,li,mq) , vo = (ka,la,m2) and Po Py = (z2 — 21,Y2 — Y1, 22 — 21) is not
in one plane

if and only if

—
V1'<V2><P2P1)7£0.

Now we will discuss some of geometric possibilities of a line and a plane.
Proposition 15.4

Let L be the line *

cz+d=0. Then

1. L is parallel to P if and only if ak + bl + cm = 0.

b
2. L 1s orthogonal to P if and only if % =7 = %

—xozy—yozz—
k ) m

0 und let P be the plane ax + by +

Proof. 1.
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L is parallel to P
if and only if

the direct vector v = (k, [, m) for L is orthogonal to normal vector n = (a, b, ¢)
for P

if and only if

ak + bl +cm = 0.

L is orthogonal to P
if and only if
the direct vector v = (k,l,m) for L is parallel to normal vector n = (a, b, ¢) for P

if and only if

Now we find a formula for the distance from a point to a line.

Proposition 14.4

Let P be the point in 3-space and let () and R be two distinct points on the
line L. Then there ea:_is)t the unique point S on L such that the vector PS 1is
orthogonal to vector QR , namely

QS =tQR, t= Q—é_')—Q—]j
|3

The distance D between a point P and the line L is
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Jor-om - (arar)
QR

_D:

Proof. The vector PS must be perpendicular to the vector Cj}% Therefore

— —
Finally, as P.S is perpendicular to Q)S, Phythagoras’ theorem gives

D?= P§? = QP* - QP* =
o -
QP? — t2QR22=

2 Cﬁéﬁ’ 2 _
or ( QR ) o -
QP*- QR - (QP-QR)
QR
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